Transport of species in a fibrous media during tissue growth
Date
2007Abstract
Tissue engineering is of major importance in biomedical transplantation techniques. However, some questions subsist as for example the mass transport between each pahse (cell, fluide and solid). In a previous paper, a one-equation model was developed in order to model mass transport during in vitro tissue growth using the volume averaging method. Using a dimensionless form of the model and a convenient formulation of the effective dispersion tensor, a numerical resolution of the closure problem is proposed. Some results allowing to validate the numerical tool are presented. This validation is carried out using results available in the literature for 2-D unit cells and under-classes of our model (namely diffusion, diffusion/reaction and diffusion/advection problems). Finally, we provide some results for the complete model taking into account diffusion, reaction and advection in the three phase system.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Conférence invitéeFlow and transport in fibrous media are encountered in a wide variety of domains ranging from biotechnology to filtration in chemical engineering. The context of this work is the in vitro cartilage cell culture on a fibrous ...
-
Communication sans acteTransplantation of engineered tissues is of major interest as an alternative to autogenic alogenic or exogenic grafts. In this study, in vitro cartilage cell culture on a fibrous biodegradable polymer scaffold is under ...
-
Article dans une revue avec comité de lectureInertial flow in porous media occurs in many situations of practical relevance among which one can cite flows in column reactors, in filters, in aquifers, or near wells for hydrocarbon recovery. It is characterized by a ...
-
Communication avec acteOur interest in this work is the stationary one-phase Newtonian flow in a class of homogeneous porous media at large enough flow rates requiring the introduction of the inertial forces at the pore-scale. At the macroscale, ...
-
Communication avec acteLa mise en place d'un outil numérique 3D de simulation d'écoulement diphasique hors régime de Darcy basé sur le modèle de Darcy-Forchheimer généralisé est présentée. L'outil est tout d’abord validé à l’aide d'une solution ...