• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Dynamique des Fluides (DynFluid)
  • View Item
  • Home
  • Dynamique des Fluides (DynFluid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
A compter du 1er janvier 2026 le portail institutionnel "HAL - Arts et Métiers Sciences et Technologies" remplacera l'archive ouverte SAM qui ne sera plus mise à jour. Pour permettre un alignement des données entre ces deux sites, les dépôts dans SAM seront arrêtés à compter du 28 novembre 2025 (17h). Pendant tout le mois de décembre l'équipe d'administration de SAM est joignable à cette adresse pour toute question sur le passage au portail Hal scienceouverte@ensam.eu

Predictive RANS simulations via Bayesian Model-Scenario Averaging

Article dans une revue avec comité de lecture
Author
CINNELLA, Paola
134975 Laboratoire de Dynamique des Fluides [DynFluid]

URI
http://hdl.handle.net/10985/10035
DOI
10.1016/j.jcp.2014.06.052
Date
2014
Journal
Journal of Computational Physics

Abstract

The turbulence closure model is the dominant source of error in most Reynolds-Averaged Navier–Stokes simulations, yet no reliable estimators for this error component currently exist. Here we develop a stochastic, a posteriori error estimate, calibrated to specific classes of flow. It is based on variability in model closure coefficients across multiple flow scenarios, for multiple closure models. The variability is estimated using Bayesian calibration against experimental data for each scenario, and Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors, to obtain a stochastic estimate of a Quantity of Interest (QoI) in an unmeasured (prediction) scenario. The scenario probabilities in BMSA are chosen using a sensor which automatically weights those scenarios in the calibration set which are similar to the prediction scenario. The methodology is applied to the class of turbulent boundary-layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation of the stochastic estimate is consistent with the measurement ground truth. Furthermore, the mean of the estimate is more consistently accurate than the individual model predictions.

Files in this item

Name:
Dynfluid-JCP-Cinella-2014.pdf
Size:
6.518Mb
Format:
PDF
Description:
Preprint
View/Open

Collections

  • Dynamique des Fluides (DynFluid)

Related items

Showing items related by title, author, creator and subject.

  • Sensitivity of Supersonic ORC Turbine Injector Designs to Fluctuating Operating Conditions 
    Communication avec acte
    BUFI, Elio Antonio; CINNELLA, Paola; MERLE, Xavier; CINNELLA, Paola (ASME, 2015)
    The design of an efficient organic rankine cycle (ORC) expander needs to take properly into account strong real gas effects that may occur in given ranges of operating conditions, which can also be highly variable. In this ...
  • Toward improved simulation tools for compressible turbomachinery: assessment of RBC schemes for the transonic NASA Rotor 37 benchmark case 
    Communication avec acte
    CINNELLA, Paola; MICHEL, Bruno (2013)
    Residual-based-compact schemes (RBC) of 2nd and 3rd-order accuracy are applied to a challenging 3D ow through a transonic compressor. The proposed schemes provide almost mesh-converged solutions in good agreement with ...
  • Toward improved simulation tools for compressible turbomachinery: assessment of Residual-Based Compact schemes for the transonic compressor NASA Rotor 37 
    Article dans une revue avec comité de lecture
    CINNELLA, Paola; MICHEL, Bruno (Taylor & Francis, 2014)
    Residual-based-compact schemes (RBC) of 2nd and 3rd-order accuracy are applied to a challenging 3D ow through a transonic compressor. The proposed schemes provide almost mesh-converged solutions in good agreement with ...
  • Simplex-stochastic collocation method with improved scalability 
    Article dans une revue avec comité de lecture
    EDELING, Wouter Nico; DWIGHT, Richard P.; CINNELLA, Paola (Elsevier, 2016)
    The Simplex-Stochastic Collocation (SSC) method is a robust tool used to propagate uncertain input distributions through a computer code. However, it becomes prohibitively expensive for problems with dimensions higher than ...
  • Robust prediction of dense gas flows under uncertain thermodynamic models 
    Article dans une revue avec comité de lecture
    MERLE, Xavier; CINNELLA, Paola (Elsevier, 2019)
    A Bayesian approach is developed to quantify uncertainties associated with the thermodynamic models used for the simulation of dense gas flows, i.e. flows of gases characterized by complex molecules of moderate to high ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales