• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Dynamique des Fluides (DynFluid)
  • View Item
  • Home
  • Dynamique des Fluides (DynFluid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predictive RANS simulations via Bayesian Model-Scenario Averaging

Article dans une revue avec comité de lecture
Author
CINNELLA, Paola
134975 Laboratoire de Dynamique des Fluides [DynFluid]

URI
http://hdl.handle.net/10985/10035
DOI
10.1016/j.jcp.2014.06.052
Date
2014
Journal
Journal of Computational Physics

Abstract

The turbulence closure model is the dominant source of error in most Reynolds-Averaged Navier–Stokes simulations, yet no reliable estimators for this error component currently exist. Here we develop a stochastic, a posteriori error estimate, calibrated to specific classes of flow. It is based on variability in model closure coefficients across multiple flow scenarios, for multiple closure models. The variability is estimated using Bayesian calibration against experimental data for each scenario, and Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors, to obtain a stochastic estimate of a Quantity of Interest (QoI) in an unmeasured (prediction) scenario. The scenario probabilities in BMSA are chosen using a sensor which automatically weights those scenarios in the calibration set which are similar to the prediction scenario. The methodology is applied to the class of turbulent boundary-layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation of the stochastic estimate is consistent with the measurement ground truth. Furthermore, the mean of the estimate is more consistently accurate than the individual model predictions.

Files in this item

Name:
Dynfluid-JCP-Cinella-2014.pdf
Size:
6.518Mb
Format:
PDF
Description:
Preprint
View/Open

Collections

  • Dynamique des Fluides (DynFluid)

Related items

Showing items related by title, author, creator and subject.

  • Sensitivity of Supersonic ORC Turbine Injector Designs to Fluctuating Operating Conditions 
    Communication avec acte
    BUFI, Elio Antonio; CINNELLA, Paola; MERLE, Xavier; CINNELLA, Paola (ASME, 2015)
    The design of an efficient organic rankine cycle (ORC) expander needs to take properly into account strong real gas effects that may occur in given ranges of operating conditions, which can also be highly variable. In this ...
  • Dense-gas effects on compressible boundary-layer stability 
    Article dans une revue avec comité de lecture
    GLOERFELT, Xavier; ROBINET, Jean-Christophe; SCIACOVELLI, Luca; CINNELLA, Paola; GRASSO, Francesco (Cambridge University Press (CUP), 2020)
    A study of dense-gas effects on the stability of compressible boundary-layer flows is conducted. From the laminar similarity solution, the temperature variations are small due to the high specific heat of dense gases, ...
  • Estimation of Model Error Using Bayesian Model-Scenario Averaging with Maximum a Posterori-Estimates 
    Ouvrage scientifique
    SCHMELZER, Martin; DWIGHT, Richard P.; EDELING, Wouter Nico; CINNELLA, Paola (Springer International Publishing, )
  • Numerical Study of Multistage Transcritical Organic Rankine Cycle Axial Turbines 
    Article dans une revue avec comité de lecture
    SCIACOVELLI, Luca; CINNELLA, Paola (American Society of Mechanical Engineers, 2014)
    Transonic flows through axial, multi-stage, transcritical ORC turbines, are investigated by using a numerical solver including advanced multiparameter equations of state and a high-order discretization scheme. The working ...
  • Bayesian quantification of thermodynamic uncertainties in dense gas flows 
    Article dans une revue avec comité de lecture
    MERLE, Xavier; CINNELLA, Paola (Elsevier, 2015)
    A Bayesian inference methodology is developed for calibrating complex equations of state used in numerical fluid flow solvers. Precisely, the input parameters of three equations of state commonly used for modeling the ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales