Predictive RANS simulations via Bayesian Model-Scenario Averaging
Article dans une revue avec comité de lecture
Date
2014Journal
Journal of Computational PhysicsRésumé
The turbulence closure model is the dominant source of error in most Reynolds-Averaged Navier–Stokes simulations, yet no reliable estimators for this error component currently exist. Here we develop a stochastic, a posteriori error estimate, calibrated to specific classes of flow. It is based on variability in model closure coefficients across multiple flow scenarios, for multiple closure models. The variability is estimated using Bayesian calibration against experimental data for each scenario, and Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors, to obtain a stochastic estimate of a Quantity of Interest (QoI) in an unmeasured (prediction) scenario. The scenario probabilities in BMSA are chosen using a sensor which automatically weights those scenarios in the calibration set which are similar to the prediction scenario. The methodology is applied to the class of turbulent boundary-layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation of the stochastic estimate is consistent with the measurement ground truth. Furthermore, the mean of the estimate is more consistently accurate than the individual model predictions.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Communication avec acteBUFI, Elio Antonio; CINNELLA, Paola; MERLE, Xavier; CINNELLA, Paola (ASME, 2015)The design of an efficient organic rankine cycle (ORC) expander needs to take properly into account strong real gas effects that may occur in given ranges of operating conditions, which can also be highly variable. In this ...
-
Communication avec acteCINNELLA, Paola; MICHEL, Bruno (2013)Residual-based-compact schemes (RBC) of 2nd and 3rd-order accuracy are applied to a challenging 3D ow through a transonic compressor. The proposed schemes provide almost mesh-converged solutions in good agreement with ...
-
Article dans une revue avec comité de lectureCINNELLA, Paola; MICHEL, Bruno (Taylor & Francis, 2014)Residual-based-compact schemes (RBC) of 2nd and 3rd-order accuracy are applied to a challenging 3D ow through a transonic compressor. The proposed schemes provide almost mesh-converged solutions in good agreement with ...
-
Article dans une revue avec comité de lectureThe present paper investigates the influence of dense gases governed by complex equations of state on the dynamics of homogeneous isotropic turbulence. In particular, we investigate how differences due to the complex ...
-
Ouvrage scientifiqueCINNELLA, Paola; GRIMICH, Karim; LERAT, Alain; OUTTIER, P. Y. (Springer International Publishing, 2015)Recent developments about the extension of high-order Residual-Based Compact schemes to unsteady flows and complex configurations are discussed, with application to scale-resolving simulations and complex turbomachinery flows.
