Predictive RANS simulations via Bayesian Model-Scenario Averaging
Article dans une revue avec comité de lecture
Date
2014Journal
Journal of Computational PhysicsRésumé
The turbulence closure model is the dominant source of error in most Reynolds-Averaged Navier–Stokes simulations, yet no reliable estimators for this error component currently exist. Here we develop a stochastic, a posteriori error estimate, calibrated to specific classes of flow. It is based on variability in model closure coefficients across multiple flow scenarios, for multiple closure models. The variability is estimated using Bayesian calibration against experimental data for each scenario, and Bayesian Model-Scenario Averaging (BMSA) is used to collate the resulting posteriors, to obtain a stochastic estimate of a Quantity of Interest (QoI) in an unmeasured (prediction) scenario. The scenario probabilities in BMSA are chosen using a sensor which automatically weights those scenarios in the calibration set which are similar to the prediction scenario. The methodology is applied to the class of turbulent boundary-layers subject to various pressure gradients. For all considered prediction scenarios the standard-deviation of the stochastic estimate is consistent with the measurement ground truth. Furthermore, the mean of the estimate is more consistently accurate than the individual model predictions.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Communication avec acteBUFI, Elio Antonio; CINNELLA, Paola; MERLE, Xavier; CINNELLA, Paola (ASME, 2015)The design of an efficient organic rankine cycle (ORC) expander needs to take properly into account strong real gas effects that may occur in given ranges of operating conditions, which can also be highly variable. In this ...
-
Article dans une revue avec comité de lectureLEUSINK, Debbie; ALFANO, David; CINNELLA, Paola (Elsevier, 2015)The industrial aerodynamic design of helicopter rotor blades needs to consider the two typical flight conditions of hover and forward flight simultaneously. Here, this multi-objective design problem is tackled by using a ...
-
Article dans une revue avec comité de lectureTransonic flows through axial, multi-stage, transcritical ORC turbines, are investigated by using a numerical solver including advanced multiparameter equations of state and a high-order discretization scheme. The working ...
-
Article dans une revue avec comité de lectureMERLE, Xavier; CINNELLA, Paola (Elsevier, 2015)A Bayesian inference methodology is developed for calibrating complex equations of state used in numerical fluid flow solvers. Precisely, the input parameters of three equations of state commonly used for modeling the ...
-
Communication avec acteCINNELLA, Paola; MICHEL, Bruno (2013)Residual-based-compact schemes (RBC) of 2nd and 3rd-order accuracy are applied to a challenging 3D ow through a transonic compressor. The proposed schemes provide almost mesh-converged solutions in good agreement with ...