• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • View Item
  • Home
  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-time in silico experiments on gene regulatory networks and surgery simulation on handheld devices

Article dans une revue avec comité de lecture
Author
ALFARO, Iciar
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
GONZALEZ, David
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
BORDEU, Felipe
10921 Institut de Recherche en Génie Civil et Mécanique [GeM]
LEYGUE, Adrien
10921 Institut de Recherche en Génie Civil et Mécanique [GeM]
AMMAR, Amine
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
CUETO, Elias
10921 Institut de Recherche en Génie Civil et Mécanique [GeM]
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
CHINESTA, Francisco
10921 Institut de Recherche en Génie Civil et Mécanique [GeM]

URI
http://hdl.handle.net/10985/10254
DOI
10.1186/2194-3990-1-1
Date
2014
Journal
Journal of Computational Surgery

Abstract

Simulation of all phenomena taking place in a surgical procedure is a formidable task that involves, when possible, the use of supercomputing facilities over long time periods. However, decision taking in the operating room needs for fast methods that provide an accurate response in real time. To this end, Model Order Reduction (MOR) techniques have emerged recently in the field of Computational Surgery to help alleviate this burden. In this paper, we review the basics of classical MOR and explain how a technique recently developed by the authors and coined as Proper Generalized Decomposition could make real-time feedback available with the use of simple devices like smartphones or tablets. Examples are given on the performance of the technique for problems at different scales of the surgical procedure, form gene regulatory networks to macroscopic soft tissue deformation and cutting.

Files in this item

Name:
LAMPA_JCS_2014_AMMAR.pdf
Size:
3.238Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)

Related items

Showing items related by title, author, creator and subject.

  • PGD-Based Computational Vademecum for Efficient Design, Optimization and Control 
    Article dans une revue avec comité de lecture
    CHINESTA, Francisco; LEYGUE, Adrien; BORDEU, Felipe; AGUADO, Jose Vicente; CUETO, Elias; GONZALEZ, David; ALFARO, Iciar; AMMAR, Amine; HUERTA, Antonio (Springer Verlag, 2013)
    In this paper we are addressing a new paradigm in the field of simulation-based engineering sciences (SBES) to face the challenges posed by current ICT technologies. Despite the impressive progress attained by simulation ...
  • Physically sound, self-learning digital twins for sloshing fluids 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; ALFARO, Iciar; GONZALEZ, David; CHINESTA, Francisco; CUETO, Elías (Public Library of Science, 2020)
    In this paper, a novel self-learning digital twin strategy is developed for fluid sloshing phenomena. This class of problems is of utmost importance for robotic manipulation of fluids, for instance, or, in general, in ...
  • Data-driven GENERIC modeling of poroviscoelastic materials 
    Article dans une revue avec comité de lecture
    GHNATIOS, Chady; ALFARO, Iciar; GONZÁLEZ, David; CHINESTA, Francisco; CUETO, Elías G. (MDPI, 2019)
    Biphasic soft materials are challenging to model by nature. Ongoing efforts are targeting their effective modeling and simulation. This work uses experimental atomic force nanoindentation of thick hydrogels to identify the ...
  • Real‐time interaction of virtual and physical objects in mixed reality applications 
    Article dans une revue avec comité de lecture
    BADÍAS, Alberto; GONZÁLEZ, David; ALFARO, Iciar; CHINESTA, Francisco; CUETO, Elías (Wiley, 2020)
    We present a real-time method for computing the mechanical interaction between real and virtual objects in an augmented reality environment. Using model order reduction methods we are able to estimate the physical behavior ...
  • Learning slosh dynamics by means of data 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; GONZÁLEZ, David; ALFARO, Iciar; CHINESTA, Francisco; CUETO, Elías G. (Springer Verlag, 2019)
    In this work we study several learning strategies for fluid sloshing problems based on data. In essence, a reduced-order model of the dynamics of the free surface motion of the fluid is developed under rigorous thermodynamics ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales