Assessment of time implicit discretizations for the computation of turbulent compressible flows
Communication avec acte
Abstract
Restrictions on the maximum allowable time step of explicit time integration methods for direct and large eddy simulations of compressible turbulent flows at high Reynolds numbers can be very severe, because of the extremely small space steps used close to solid walls to capture tiny and elongated boundary layer structures. A way of increasing stability limits is to use implicit time integration schemes. However, the price to pay is a higher computational cost per time step, higher discretization errors and lower parallel scalability. A successful implicit time scheme for scale-resolving simulations should provide the best possible compromise between these opposite requirements. In this paper, several implicit schemes are assessed against two explicit time integration techniques, namely a standard four-stage and a six-stage optimized Runge–Kutta method, in terms of computational cost required to achieve a threshold level of accuracy. Precisely, a second-order backward scheme solved by means of matrix-free quasi-exact Newton subiterations is compared to time-accurate Runge–Kutta implicit residual smoothing (IRS) schemes. A new IRS scheme of fourth-order accuracy, based on a bilaplacian operator, is developed to improve the accuracy of the classical second-order approach. Numerical results show that the proposed IRS scheme leads to reductions in computational time by about a factor 5 for an accuracy comparable to that of the corresponding explicit Runge-Kutta scheme.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Communication avec acteBUFI, Elio Antonio; CINNELLA, Paola; MERLE, Xavier; CINNELLA, Paola (ASME, 2015)The design of an efficient organic rankine cycle (ORC) expander needs to take properly into account strong real gas effects that may occur in given ranges of operating conditions, which can also be highly variable. In this ...
-
Communication avec acteCINNELLA, Paola; MICHEL, Bruno (2013)Residual-based-compact schemes (RBC) of 2nd and 3rd-order accuracy are applied to a challenging 3D ow through a transonic compressor. The proposed schemes provide almost mesh-converged solutions in good agreement with ...
-
Article dans une revue avec comité de lectureCINNELLA, Paola; MICHEL, Bruno (Taylor & Francis, 2014)Residual-based-compact schemes (RBC) of 2nd and 3rd-order accuracy are applied to a challenging 3D ow through a transonic compressor. The proposed schemes provide almost mesh-converged solutions in good agreement with ...
-
Article dans une revue avec comité de lectureThe present paper investigates the influence of dense gases governed by complex equations of state on the dynamics of homogeneous isotropic turbulence. In particular, we investigate how differences due to the complex ...
-
Ouvrage scientifiqueCINNELLA, Paola; GRIMICH, Karim; LERAT, Alain; OUTTIER, P. Y. (Springer International Publishing, 2015)Recent developments about the extension of high-order Residual-Based Compact schemes to unsteady flows and complex configurations are discussed, with application to scale-resolving simulations and complex turbomachinery flows.
