Recent Progress in High-Order Residual-Based Compact Schemes for Compressible Flow Simulations: Toward Scale-Resolving Simulations and Complex Geometries
Type
Ouvrages scientifiquesAbstract
Recent developments about the extension of high-order Residual-Based Compact schemes to unsteady flows and complex configurations are discussed, with application to scale-resolving simulations and complex turbomachinery flows.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
BUFI, Elio A.; CINNELLA, Paola; MERLE, Xavier; CINNELLA, Paola (ASME, 2015)The design of an efficient organic rankine cycle (ORC) expander needs to take properly into account strong real gas effects that may occur in given ranges of operating conditions, which can also be highly variable. In this ...
-
PONT, Grégoire; PONT, Grégoire; BRENNER, Pierre; BRENNER, Pierre; CINNELLA, Paola; CINNELLA, Paola; MAUGARS, Bruno; MAUGARS, Bruno; ROBINET, Jean-Christophe; ROBINET, Jean-Christophe (Elsevier BVElsevier BV, 2017)A Godunov's type unstructured finite volume method suitable for highly compressible turbulent scale-resolving simulations around complex geometries is constructed by using a successive correction technique. First, a family ...
-
CINNELLA, Paola; MICHEL, Bruno (2013)Residual-based-compact schemes (RBC) of 2nd and 3rd-order accuracy are applied to a challenging 3D ow through a transonic compressor. The proposed schemes provide almost mesh-converged solutions in good agreement with ...
-
CONGEDO, Pietro; CORRE, Christophe; CINNELLA, Paola (AIAA, 2007)High-performance airfoils for transonic flows of Bethe–Zel’dovich–Thompson fluids are constructed using a robust and efficient Euler flow solver coupled with a multi-objective genetic algorithm. Bethe–Zel’dovich– Thompson ...
-
SCIACOVELLI, Lucas; CINNELLA, Paola (2013)Many recent studies suggest that supercritical Organic Rankine Cycles have a great potential for lowtemperature heat recovery applications, since they allow better recovery efficiency for a simplified cycle architecture. ...