• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Learning Architecture for Topological Optimized Mechanical Design Generation with Complex Shape Criterion

Communication avec acte
Author
ALMASRI, Waad
580506 Expleo Group
BETTEBGHOR, Dimitri
580506 Expleo Group
ABABSA, Fakhreddine
ADJED, Faouzi
580506 Expleo Group
ccDANGLADE, Florence
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]

URI
http://hdl.handle.net/10985/20997
DOI
10.1007/978-3-030-79457-6_19
Date
2021

Abstract

Topology optimization is a powerful tool for producing an optimal free-form design from input mechanical constraints. However, in its traditional-density-based approach, it does not feature a proper definition for the external boundary. Therefore, the integration of shape-related constraints remains hard. It requires the experts’ intervention to interpret the generated designs into parametric shapes; thus, making the design process time-consuming. With the growing role of additive manufacturing in the industry, developing a design approach considering mechanical and geometrical constraints simultaneously becomes an interesting way to integrate manufacturing and aesthetics constraints into mechanical design. In this paper, we propose to generate mechanically and geometrically valid designs using a deep-learning solution trained via a dual-discriminator Generative Adversarial Network (GAN) framework. This Deep-learning-geometrical-driven solution generates designs very similar to traditional topology optimization’s outputs in a fraction of time. Moreover, it allows an easy shape fine-tuning by a simple increase/decrease of the input geometrical condition (here the total-bar-count), a task that a traditional topology optimization cannot achieve.

Files in this item

Name:
LISPEN_AIE_2021_ALMASRI.pdf
Size:
3.143Mb
Format:
PDF
Embargoed until:
2022-01-26
View/Open

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Geometrically-driven generation of mechanical designs through deep convolutional GANs 
    Article dans une revue avec comité de lecture
    ALMASRI, Waad; ccBETTEBGHOR, Dimitri; ADJED, Faouzi; ccDANGLADE, Florence; ABABSA, Fakhreddine (Informa UK Limited, 2022-12-16)
    Despite the freedom Additive Manufacturing (AM) offers when manufacturing organic shapes, it still requires some geometrical criteria to avoid a part's collapse during printing. The most synergetic design approach to AM ...
  • GMCAD: an original Synthetic Dataset of 2D Designs along their Geometrical and Mechanical Conditions 
    Article dans une revue avec comité de lecture
    ALMASRI, Waad; BETTEBGHOR, Dimitri; ADJED, Faouzi; ABABSA, Fakhreddine; ccDANGLADE, Florence (Elsevier BV, 2022)
    We build an original synthetic dataset of 2D mechanical designs alongside their mechanical and geometric constraints, GMCAD. Such a dataset allows training Deep Learning (DL) models for Design for Additive Manufacturing ...
  • Deep Learning for Additive Manufacturing-driven Topology Optimization 
    Article dans une revue avec comité de lecture
    ALMASRI, Waad; BETTEBGHOR, Dimitri; ADJED, Faouzi; ABABSA, Fakhreddine; ccDANGLADE, Florence (Elsevier BV, 2022-06-21)
    This paper investigates the potential of Deep Learning (DL) for data-driven topology optimization (TO). Unlike the rest of the literature that mainly applies DL to TO from a mechanical perspective, we developed an original ...
  • Evaluating Added Value of Augmented Reality to Assist Aeronautical Maintenance Workers - Experimentation on On-Field Use Case 
    Communication avec acte
    LOIZEAU, Quentin; ABABSA, Fakhreddine; ccMERIENNE, Frédéric; ccDANGLADE, Florence (2019)
    Augmented Reality (AR) technology facilitates interactions with information and understanding of complex situations. Aeronautical Maintenance combines complexity induced by the variety of products and constraints associated ...
  • Methodology for the Field Evaluation of the Impact of Augmented Reality Tools for Maintenance Workers in the Aeronautic Industry 
    Article dans une revue avec comité de lecture
    LOIZEAU, Quentin; ABABSA, Fakhreddine; ccMERIENNE, Frédéric; ccDANGLADE, Florence (Frontiers, 2021)
    Augmented Reality (AR) enhances the comprehension of complex situations by making the handling of contextual information easier. Maintenance activities in aeronautics consist of complex tasks carried out on various ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales