• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geometrically-driven generation of mechanical designs through deep convolutional GANs

Article dans une revue avec comité de lecture
Author
ALMASRI, Waad
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
1152952 EXPLEO GROUP, Montigny-Le-Bretonneux
ccBETTEBGHOR, Dimitri
1152952 EXPLEO GROUP, Montigny-Le-Bretonneux
ADJED, Faouzi
1152952 EXPLEO GROUP, Montigny-Le-Bretonneux
ccDANGLADE, Florence
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ABABSA, Fakhreddine
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccABABSA, Fakhreddine
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]

URI
http://hdl.handle.net/10985/23384
DOI
10.1080/0305215x.2022.2144847
Date
2022-12-16
Journal
Engineering Optimization

Abstract

Despite the freedom Additive Manufacturing (AM) offers when manufacturing organic shapes, it still requires some geometrical criteria to avoid a part's collapse during printing. The most synergetic design approach to AM is Topology Optimization (TO), which finds an optimal free-form given mechanical constraints. However, it is hard for TO to integrate these layout geometry-related constraints and it seldom proposes printable shapes. Therefore, this work leverages the Deep Learning (DL) capability to handle spatial correlations within the mechanical design process by integrating the layout and mechanical constraints at the conceptual level. It proposes a DL-layout-driven solution (DL-TO) trained via a triple-discriminator Generative Adversarial Network (GAN) framework. The DL-TO's performance is demonstrated by generating mechanically valid 2D designs conforming with layout constraints in a fraction of a second. DL-TO's creativity is illustrated by its capability to generate designs with unseen input constraints (passive/active elements) and to propose several shapes for the same input mechanical constraints, a task that is hard for a traditional TO to achieve.

Files in this item

Name:
LISPEN_EO_2022_ALMASRI.pdf
Size:
4.028Mb
Format:
PDF
Embargoed until:
2023-06-16
View/Open

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Deep Learning for Additive Manufacturing-driven Topology Optimization 
    Article dans une revue avec comité de lecture
    ALMASRI, Waad; DANGLADE, Florence; BETTEBGHOR, Dimitri; ADJED, Faouzi; ABABSA, Fakhreddine (Elsevier BV, 2022-06-21)
    This paper investigates the potential of Deep Learning (DL) for data-driven topology optimization (TO). Unlike the rest of the literature that mainly applies DL to TO from a mechanical perspective, we developed an original ...
  • Deep Learning Architecture for Topological Optimized Mechanical Design Generation with Complex Shape Criterion 
    Communication avec acte
    ALMASRI, Waad; BETTEBGHOR, Dimitri; ABABSA, Fakhreddine; DANGLADE, Florence; ADJED, Faouzi (Springer International Publishing, 2021)
    Topology optimization is a powerful tool for producing an optimal free-form design from input mechanical constraints. However, in its traditional-density-based approach, it does not feature a proper definition for the ...
  • GMCAD: an original Synthetic Dataset of 2D Designs along their Geometrical and Mechanical Conditions 
    Article dans une revue avec comité de lecture
    ALMASRI, Waad; BETTEBGHOR, Dimitri; ADJED, Faouzi; ABABSA, Fakhreddine; DANGLADE, Florence (Elsevier BV, 2022)
    We build an original synthetic dataset of 2D mechanical designs alongside their mechanical and geometric constraints, GMCAD. Such a dataset allows training Deep Learning (DL) models for Design for Additive Manufacturing ...
  • Evaluating Added Value of Augmented Reality to Assist Aeronautical Maintenance Workers - Experimentation on On-Field Use Case 
    Communication avec acte
    LOIZEAU, Quentin; DANGLADE, Florence; ABABSA, Fakhreddine; MERIENNE, Frédéric (2019)
    Augmented Reality (AR) technology facilitates interactions with information and understanding of complex situations. Aeronautical Maintenance combines complexity induced by the variety of products and constraints associated ...
  • Methodology for the Field Evaluation of the Impact of Augmented Reality Tools for Maintenance Workers in the Aeronautic Industry 
    Article dans une revue avec comité de lecture
    LOIZEAU, Quentin; DANGLADE, Florence; ABABSA, Fakhreddine; MERIENNE, Frédéric (Frontiers, 2021)
    Augmented Reality (AR) enhances the comprehension of complex situations by making the handling of contextual information easier. Maintenance activities in aeronautics consist of complex tasks carried out on various ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales