• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • Voir le document
  • Accueil de SAM
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated Spinal Midline Delineation on Biplanar X-Rays Using Mask R-CNN

Communication avec acte
Auteur
YANG, Zixin
466360 Institut de Biomecanique Humaine Georges Charpak
SKALLI, Wafa
466360 Institut de Biomecanique Humaine Georges Charpak
VERGARI, Claudio
466360 Institut de Biomecanique Humaine Georges Charpak
ANGELINI, Elsa
69530 Imperial College London
484335 Laboratoire Traitement et Communication de l'Information [LTCI]
GAJNY, Laurent
466360 Institut de Biomecanique Humaine Georges Charpak

URI
http://hdl.handle.net/10985/17155
DOI
10.1007/978-3-030-32040-9_32
Date
2019

Résumé

Manually annotating medical images with few landmarks to initialize 3D shape models is a common practice. For instance, when reconstructing the 3D spine from biplanar X-rays, the spinal midline, passing through vertebrae body centers (VBCs) and endplate midpoints, is required. This paper presents an automated spinal midline delineation method on frontal and sagittal views by using Mask R-CNN. The network detects all vertebrae from C7 to L5, followed by vertebrae segmentation and classification at the same time. After postprocessing to discard outliers, the vertebrae mask centers were regarded as VBCs to get the spine midline by polynomial fitting. Evaluation of the spinal midline on 136 images used root mean square error (RMSE) with respect to manual ground-truth. The RMSE ± standard error values of predicted spinal midlines (C7-L5) were 1.11 mm ± 0.67 mm on frontal views and 1.92mm ± 1.38 mm on sagittal views. The proposed method is capable of delineating spinal midlines on patients with different spine deformity degrees.

Fichier(s) constituant cette publication

Nom:
IBHGC_VipI_2019_YANG.pdf
Taille:
1.121Mo
Format:
PDF
Fin d'embargo:
2020-09-29
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Quasi-automatic 3D reconstruction of the full spine from low-dose biplanar X-rays based on statistical inferences and image analysis 
    Article dans une revue avec comité de lecture
    GAJNY, Laurent; EBRAHIMI, Shahin; VERGARI, Claudio; ANGELINI, Elsa; SKALLI, Wafa (Springer Verlag, 2018)
    Purpose: To design a quasi-automated three-dimensional reconstruction method of the spine from biplanar X-rays as the daily used method in clinical routine is based on manual adjustments of a trained operator and the ...
  • Vertebral rotation estimation from frontal X-rays using a quasi-automated pedicle detection method 
    Article dans une revue avec comité de lecture
    EBRAHIMI, Shahin; GAJNY, Laurent; VERGARI, Claudio; ANGELINI, Elsa; SKALLI, Wafa (Springer Verlag, 2019)
    Purpose Measurement of vertebral axial rotation (VAR) is relevant for the assessment of scoliosis. Stokes method allows estimating VAR in frontal X-rays from the relative position of the pedicles and the vertebral body. ...
  • Lumbar spine posterior corner detection in X-rays using Haar-based features 
    Communication avec acte
    EBRAHIMI, Shahin; ANGELINI, Elsa; GAJNY, Laurent; SKALLI, Wafa (IEEE, 2016)
    3D reconstruction of the spine using biplanar X-rays remains approximate and requires human-machine interactions to adjust the position of important features such as vertebral corners and endplates. The purpose of this ...
  • Automatic Segmentation and Identification of Spinous Processes on Sagittal X-Rays Based on Random Forest Classification and Dedicated Contextual Features 
    Communication avec acte
    EBRAHIMI, Shahin; GAJNY, Laurent; SKALLI, Wafa; ANGELINI, Elsa D. (IEEE, 2019)
    X-ray based quantitative analysis of spine parameters is required in routine diagnosis or treatment planning. Existing tools commonly require manual intervention. Attempts towards automation of the whole procedure have ...
  • Vertebral corners detection on sagittal X-rays based on shape modelling, random forest classifiers and dedicated visual features 
    Article dans une revue avec comité de lecture
    EBRAHIMI, Shahin; GAJNY, Laurent; SKALLI, Wafa; ANGELINI, Elsa (Taylor & Francis, 2018)
    Quantitative measurements of spine shape parameters on planar X-ray images is critical for clinical applications but remains tedious and with no fully-automated solution demonstrated on the whole spine. This study aims to ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales