Rapid crack propagation in PA11: An application to pipe structure
Article dans une revue avec comité de lecture
Date
2018Journal
Engineering Fracture MechanicsAbstract
Dynamic fracture mechanism in Polyamide 11 (PA11) material has been described at laboratory scale to access to an intrinsic material parameter. A liquid transportation application is considered with polymer pipes. A preliminary numerical analysis of the rapid crack propagation (RCP) in polymer pipe is firstly realised. Two boundary conditions, imposed displacement or pressure, are numerically investigated. The work of external forces is not negligible for pressurized polymer pipe. A reliable estimate of the dynamic energy release rate GId is in this last case not guaranteed. To limit unwanted structural effects a specific experimental device has been used to ensure a permanent regime of RCP in Pre-Stressed Pipe Specimen (PS2). Experimental dynamic fracture tests are realised with Polyamide 11 PS2. Dynamic instabilities inducing “ring-off” and “snake” mechanisms which could appear during full-scale test are not observed with this new test. A finite element procedure is used to estimate the material toughness GID of PA11. Knowing the crack tip location during RCP inertia effects (i.e. kinetic energy) are quantified. The mean crack tip velocity is observed not to change in PA11 whatever the crack configuration (branching or not). This velocity is known to be the crack branching velocity (≈0.6cR). The average dynamic energy release rate 〈GID〉 is equal to 1.5± 0.1 kJm−2 at the crack branching velocity. The nontrivial fracture surface roughness is observed with a scanning electron microscope.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureProfilometric imaging of fracture surfaces of rubber toughened polymer has been performed at two different resolutions (a) at large scales [10 μ\upmu m–25 mm] using an opto-mechanical profilometer and (b) at small scales ...
-
Article dans une revue avec comité de lectureCORE, Arthur; CHARLES, Jean-Luc; VIOT, Philippe; DAU, Frédéric; KOPP, Jean-Benoit (Hindawi Publishing Corporation, 2017)This paper deals with the characterization and the numerical modelling of the collapse of composite hollow spherical structures developed to absorb energy during high velocity impacts. The structure is composed of hollow ...
-
Article dans une revue avec comité de lectureHENRY, Quentin; VIOT, Philippe; LE BARBENCHON, Louise; COSCULLUELA, Antonio; KOPP, Jean-Benoit (Elsevier BV, 2024-06)The mechanical response of porous aluminas under compressive loading was studied and compared with the fracture mechanisms. Aluminas with a wide range of pore sizes and porosity rates (1–60%) were produced to deconvolve ...
-
Article dans une revue avec comité de lectureMAZEL, Vincent; GIRARDOT , Jeremie; KOPP, Jean-Benoit; MOREL, Stéphane; TCHORELOFF, Pierre (Elsevier BV, 2023-07)The mechanical strength is an important quality attribute of pharmaceutical tablets. It can be determined using different failure tests like the Brazilian test or the three-point bending test. Nevertheless, literature shows ...
-
Article dans une revue avec comité de lectureResearch on nanocellular foams is motivated in part by the promise of physical properties, in particular mechanical properties, that can go beyond the classical mechanical framework. However, due to the difficulty in ...