• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
  • Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A damaging beam-lattice model for quasi-brittle fracture

Article dans une revue avec comité de lecture
Author
SAGE, Margaux
ccGIRARDOT, Jeremie
1002421 Institut de Mécanique et d'Ingénierie [I2M]
ccKOPP, Jean-Benoit
MOREL, Stéphane

URI
http://hdl.handle.net/10985/21460
DOI
10.1016/j.ijsolstr.2021.111404
Date
2022
Journal
International Journal of Solids and Structures

Abstract

This work aims to propose a new damaging beam-lattice model using the Discrete Element Method paradigm dedicated to the simulation of quasi-brittle fracture under complex loadings. Enrichment of the elastic Euler–Bernoulli beam link, inspired by the cohesive zone models, is proposed to provide a damageable behavior in mixed mode and contribution of frictional behavior is not considered in this first version of the damage model. The tensile contribution on the beam link is taken into account from the first order elongation of the beam while all other contributions, i.e. bending, shear, and torsion are considered from the second-order elongation of the beam. These orders of elongation refer to beam theory, where the first elongation is induced by a force normal to the cross-section and the second is the elongation of the curvilinear length of the beam resulting from shear, bending and torsion loads. As these two kinematics do not correspond to the conventional modes I, II, and III, a deep checking step of the model is undertaken. First, mixed-mode testing on a single beam is performed to monitor the energy components dissipated in each mode and to ensure that energy dissipated in mixed mode exhibits a monotonic evolution between boundary values related to pure modes. Based on this first verification, a tensile test and a compression one are simulated on a cylinder specimen to evaluate the model capabilities to qualitatively describe the well-known characteristics of quasi-brittle fracture such as failure facies, unilateral effect, and the ratio between the compression and tensile strength. Finally, the model is used to simulate a complex crack propagation test coming from the recent international Carpiuc benchmark.

Files in this item

Name:
I2M_IJSS_2021_ GIRARDOT.pdf
Size:
11.77Mb
Format:
PDF
Embargoed until:
2022-07-01
View/Open

Collections

  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)

Related items

Showing items related by title, author, creator and subject.

  • Comparing failure tests on pharmaceutical tablets: Interpretation using experimental results and a numerical approach with cohesive zone models 
    Article dans une revue avec comité de lecture
    ccMAZEL, Vincent; ccGIRARDOT , Jeremie; ccKOPP, Jean-Benoit; MOREL, Stéphane; TCHORELOFF, Pierre (Elsevier BV, 2023-07)
    The mechanical strength is an important quality attribute of pharmaceutical tablets. It can be determined using different failure tests like the Brazilian test or the three-point bending test. Nevertheless, literature shows ...
  • Reevaluation of the diametral compression test for tablets using the flattened disc geometry 
    Article dans une revue avec comité de lecture
    MAZEL, Vincent; ccGUÉRARD, Sandra; CROQUELOIS, Benjamin; ccKOPP, Jean-Benoit; ccGIRARDOT, Jeremie; DIARRA, Harona; BUSIGNIES, Virginie; TCHORELOFF, Pierre (Elsevier, 2016)
    Mechanical strength is an important critical quality attribute for tablets. It is classically measured, in the pharmaceutical field, using the diametral compression test. Nevertheless, due to small contact area between the ...
  • Energy Absorption Capacity of Agglomerated Cork Under Severe Loading Conditions 
    Article dans une revue avec comité de lecture
    ccLE BARBENCHON, Louise; ccVIOT, Philippe; ccGIRARDOT, Jeremie; ccKOPP, Jean-Benoit (Springer, 2021)
    Understanding the mechanical behavior of materials in working conditions is a current problem in transport industries. In this article, we demonstrate why the temperature and the strain-rate are first-order parameters when ...
  • Dynamic Fracture of a Semi-Crystalline Bio-Based Polymer Pipe: Effect of Temperature 
    Article dans une revue avec comité de lecture
    ccKOPP, Jean-Benoit; ccGIRARDOT, Jeremie (Scientific Research Publishing, Inc., 2021)
    The influence of temperature on the resistance to rapid crack propagation of a semi-crystalline bio-based polymer was studied. The experimental results described in this study allow to initiate a first discussion ...
  • Study of the dynamic fracture of hollow spheres under compression using the Discrete Element Method 
    Article dans une revue avec comité de lecture
    CORE, Arthur; ccKOPP, Jean-Benoit; ccGIRARDOT, Jeremie; ccVIOT, Philippe (ESIS - Elsevier, 2018)
    Hollow sphere structure (HSS) belongs to cellular solids that have been studied recently for its multiples properties. In our case, HSS aims to absorb soft impacts energy on an airliner cockpit. This structure is investigated ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales