• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Efficient Human Activity Recognition Technique Based on Deep Learning

Article dans une revue avec comité de lecture
Author
KHELALEF, Aziz
238162 Université Hadj Lakhdar Batna 1
ABABSA, Fakhreddine
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
BENOUDJIT, Nabil
238162 Université Hadj Lakhdar Batna 1

URI
http://hdl.handle.net/10985/18281
DOI
10.1134/s1054661819040084
Date
2019
Journal
Распознавание образов и анализ изображе&#1085 / Pattern Recognition and Image Analysis: Advances in Mathematical Theory and Applications

Abstract

In this paper, we present a new deep learning-based human activity recognition technique. First, we track and extract human body from each frame of the video stream. Next, we abstract human silhouettes and use them to create binary space-time maps (BSTMs) which summarize human activity within a defined time interval. Finally, we use convolutional neural network (CNN) to extract features from BSTMs and classify the activities. To evaluate our approach, we carried out several tests using three public datasets: Weizmann, Keck Gesture and KTH Database. Experimental results show that our technique outperforms conventional state-of-the-art methods in term of recognition accuracy and provides comparable performance against recent deep learning techniques. It’s simple to implement, requires less computing power, and can be used for multi-subject activity recognition.

Files in this item

Name:
LISPEN_PRIA_ABABSA_2019.pdf
Size:
2.146Mb
Format:
PDF
Embargoed until:
2020-06-29
View/Open

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Advanced Deep Learning Techniques for Industry 4.0: Application to Mechanical Design and Structural Health Monitoring 
    Communication avec acte
    ccABABSA, Fakhreddine (SCITEPRESS - Science and Technology Publications, 2024-02)
    Nowadays, Deep Learning (DL) techniques are increasingly employed in industrial applications. This paper investigate the development of data-driven models for two use cases: Additive Manufacturing-driven Topology Optimization ...
  • 3D Human Pose Estimation with a Catadioptric Sensor in Unconstrained Environments Using an Annealed Particle Filter 
    Article dans une revue avec comité de lecture
    ABABSA, Fakhreddine; HADJ-ABDELKADER, Hicham; BOUI, Marouane (MDPI, 2020)
    The purpose of this paper is to investigate the problem of 3D human tracking in complex environments using a particle filter with images captured by a catadioptric vision system. This issue has been widely studied in the ...
  • Image processing through deep learning after DI extraction for the SHM of aeronautic composite structures using Lamb waves 
    Communication avec acte
    HUSAIN, Salmanne; ccRÉBILLAT, Marc; ccABABSA, Fakhreddine (SPIE, 2023-07)
    Ce papier présente une méthode de classification des dommages présents dans des plaques composites utilisées dans le contexte aéronautique. les approches utilisées sont issues du traitement du signal, de l'image et de ...
  • Evaluating Added Value of Augmented Reality to Assist Aeronautical Maintenance Workers - Experimentation on On-Field Use Case 
    Communication avec acte
    LOIZEAU, Quentin; ABABSA, Fakhreddine; ccMERIENNE, Frédéric; ccDANGLADE, Florence (2019)
    Augmented Reality (AR) technology facilitates interactions with information and understanding of complex situations. Aeronautical Maintenance combines complexity induced by the variety of products and constraints associated ...
  • Towards improving the future of manufacturing through digital twin and augmented reality technologies 
    Article dans une revue avec comité de lecture
    RABAH, Souad; ASSILA, Ahlem; KHOURI, Elio; MAIER, Florian; ABABSA, Fakhreddine; BOURNY, Valéry; MAIER, Paul; ccMERIENNE, Frédéric (Elsevier, 2018)
    We are on the cusp of a technological revolution that will fundamentally change our relationships to others and the way we live and work. These changes, in their importance, scope, and complexity, is different than what ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales