Combining Freehand Ultrasound-Based Indentation and Inverse Finite Element Modelling for the Identification of Hyperelastic Material Properties of Thigh Soft Tissues
Article dans une revue avec comité de lecture
Date
2020Journal
Journal of Biomechanical EngineeringRésumé
Finite Element Analysis (FEA) is a numerical modelling tool vastly employed in research facilities to analyse and predict load transmission between the human body and a medical device, such as a prosthesis or an exoskeleton. Yet, the use of Finite Element Modelling (FEM) in a framework compatible with clinical constraints is hindered by, amongst others, heavy and time-consuming assessments of material properties. Ultrasound imaging opens new and unique opportunities for the assessment of in vivo material properties of soft tissues. Confident of these advances, a method combining a freehand ultrasound probe and a force sensor was developed in order to compute the hyperelastic constitutive parameters of the soft tissues of the thigh in both relaxed (R) and contracted (C) muscles configurations. Seven asymptomatic subjects were included for the experiment. Two operators in each configuration performed the acquisitions. Inverse FEM allowed for the optimisation of an Ogden’s hyperelastic constitutive model of soft tissues of the thigh in large displacement. The mean shear modulus identified for configurations R and C were respectively 3.2 ± 1.3 kPa and 13.7 ± 6.5 kPa. The mean alpha parameter identified for configurations R and C were respectively 10 ± 1 and 9 ± 4. An analysis of variance showed that the configuration had an effect on constitutive parameters but not the operator.
Fichier(s) constituant cette publication
- Nom:
- IBHGC_JBE_2020_FOUGERON.pdf
- Taille:
- 1.422Mo
- Format:
- Description:
- Article
- Fin d'embargo:
- 2020-09-01
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Communication sans acteProsthetic sockets are custom-designed and are decisive for functionality and comfort of limb prosthesis. To ensure load transmission and stability, high interface stresses are applied. Several computer models of the ...
-
Article dans une revue avec comité de lectureFOUGERON, Nolwenn; ROSE, Jean-Loïc; BONNET, Xavier; ROHAN, Pierre-Yves; PILLET, Helene (Elsevier BV, 2022-07)The role of the above-knee socket is to ensure the load transfer via the coupling of residual limb-prosthesis with minimal discomfort and without damaging the soft tissues. Modelling is a potential tool to predict socket ...
-
Communication avec acteFOUGERON, Nolwenn; BONNET, Xavier; PANHELLEUX, Brieuc; ROSE, Jean-Loïc; ROHAN, Pierre-Yves; PILLET, Helene (Taylor and Francis, 2020)Evaluation of muscle forces is relevant to understand walking strategies of amputated subjects. Such results could be implemented in finite element modelling to study the interaction between the residual limb and the socket ...
-
Chapitre d'ouvrage scientifiqueBERRIOT, Audrey; FOUGERON, Nolwenn; BONNET, Xavier; ROHAN, Pierre-Yves; PILLET, Helene (Springer International Publishing, 2021)The proper management of the local mechanical environment within soft tissues is a key challenge central the prevention of Pressure Ulcers (PUs). Magnetic Resonance (MR) imaging is the preferred imaging modality to measure ...
-
Communication avec actePANHELLEUX, Brieuc; FOUGERON, Nolwenn; RUYSSEN, Nicolas; BONNET, Xavier; ROHAN, Pierre-Yves; PILLET, Helene (Taylor and Francis, 2020)Measurement of femur motion relative to the socket in gait in TF amputated patients can be a good indicator of prosthesis outcome. Our model, using low dose bi- planar radiography and motion capture, gives a prediction of ...