Data-driven GENERIC modeling of poroviscoelastic materials
Article dans une revue avec comité de lecture
Author
Abstract
Biphasic soft materials are challenging to model by nature. Ongoing efforts are targeting their effective modeling and simulation. This work uses experimental atomic force nanoindentation of thick hydrogels to identify the indentation forces are a function of the indentation depth. Later on, the atomic force microscopy results are used in a GENERIC general equation for non-equilibrium reversible-irreversible coupling (GENERIC) formalism to identify the best model conserving basic thermodynamic laws. The data-driven GENERIC analysis identifies the material behavior with high fidelity for both data fitting and prediction.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureCHINESTA, Francisco; LEYGUE, Adrien; BORDEU, Felipe; AGUADO, Jose Vicente; CUETO, Elias; GONZALEZ, David; ALFARO, Iciar; AMMAR, Amine; HUERTA, Antonio (Springer Verlag, 2013)In this paper we are addressing a new paradigm in the field of simulation-based engineering sciences (SBES) to face the challenges posed by current ICT technologies. Despite the impressive progress attained by simulation ...
-
Article dans une revue avec comité de lectureMOYA, Beatriz; ALFARO, Iciar; GONZALEZ, David; CHINESTA, Francisco; CUETO, Elías (Public Library of Science, 2020)In this paper, a novel self-learning digital twin strategy is developed for fluid sloshing phenomena. This class of problems is of utmost importance for robotic manipulation of fluids, for instance, or, in general, in ...
-
Article dans une revue avec comité de lectureBADÍAS, Alberto; GONZÁLEZ, David; ALFARO, Iciar; CHINESTA, Francisco; CUETO, Elías (Wiley, 2020)We present a real-time method for computing the mechanical interaction between real and virtual objects in an augmented reality environment. Using model order reduction methods we are able to estimate the physical behavior ...
-
Article dans une revue avec comité de lectureMOYA, Beatriz; GONZÁLEZ, David; ALFARO, Iciar; CHINESTA, Francisco; CUETO, Elías G. (Springer Verlag, 2019)In this work we study several learning strategies for fluid sloshing problems based on data. In essence, a reduced-order model of the dynamics of the free surface motion of the fluid is developed under rigorous thermodynamics ...
-
Article dans une revue avec comité de lectureALFARO, Iciar; GONZALEZ, David; BORDEU, Felipe; LEYGUE, Adrien; AMMAR, Amine; CUETO, Elias; CHINESTA, Francisco (Springer Verlag, 2014)Simulation of all phenomena taking place in a surgical procedure is a formidable task that involves, when possible, the use of supercomputing facilities over long time periods. However, decision taking in the operating ...