A Data-Driven Learning Method for Constitutive Modeling: Application to Vascular Hyperelastic Soft Tissues
Article dans une revue avec comité de lecture
Author
GONZÁLEZ, David
95355 Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
95355 Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
GARCÍA-GONZÁLEZ, Alberto
85878 Universitat Politècnica de Catalunya = Université polytechnique de Catalogne [Barcelona] [UPC]
85878 Universitat Politècnica de Catalunya = Université polytechnique de Catalogne [Barcelona] [UPC]
Abstract
We address the problem of machine learning of constitutive laws when large experimental deviations are present. This is particularly important in soft living tissue modeling, for instance, where large patient-dependent data is found. We focus on two aspects that complicate the problem, namely, the presence of an important dispersion in the experimental results and the need for a rigorous compliance to thermodynamic settings. To address these difficulties, we propose to use, respectively, Topological Data Analysis techniques and a regression over the so-called General Equation for the Nonequilibrium Reversible-Irreversible Coupling (GENERIC) formalism (M. Grmela and H. Ch. Oettinger, Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620, 1997). This allows us, on one hand, to unveil the true “shape” of the data and, on the other, to guarantee the fulfillment of basic principles such as the conservation of energy and the production of entropy as a consequence of viscous dissipation. Examples are provided over pseudo-experimental and experimental data that demonstrate the feasibility of the proposed approach.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureMOYA GARCÍA, Beatriz; BADIAS, Alberto; GONZALEZ, David; CHINESTA SORIA, Francisco; CUETO, Elias (2023)Learning and reasoning about physical phenomena is still a challenge in robotics development, and computational sciences play a capital role in the search for accurate methods able to provide explanations for past events ...
-
Article dans une revue avec comité de lectureBADÍAS, Alberto; CURTIT, Sarah; GONZÁLEZ, David; CUETO, Elias; ALFARO, Icíar; CHINESTA SORIA, Francisco (Wiley, 2019)While modern CFD tools are able to provide the user with reliable and accurate simulations, there is a strong need for interactive design and analysis tools. State-of-the-art CFD software employs massive resources in terms ...
-
Article dans une revue avec comité de lectureBADIAS, Alberto; GONZALEZ, David; CUETO, Elias; ALFARO, Icíar; CHINESTA SORIA, Francisco (Institute of Electrical and Electronics Engineers (IEEE), 2022-11)We propose a new methodology to estimate the 3D displacement field of deformable objects from video sequences using standard monocular cameras. We solve in real time the complete (possibly visco-)hyperelasticity problem ...
-
Article dans une revue avec comité de lecturePhysics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements ...
-
Article dans une revue avec comité de lectureHERNANDEZ, Quercus; BADIAS, Alberto; GONZALEZ, David; CUETO, Elias; CHINESTA SORIA, Francisco (Elsevier, 2021)We present an algorithm to learn the relevant latent variables of a large-scale discretized physical system and predict its time evolution using thermodynamically-consistent deep neural networks. Our method relies on sparse ...