Learning non-Markovian physics from data
Article dans une revue avec comité de lecture
Date
2020Journal
Journal of Computational PhysicsAbstract
We present a method for the data-driven learning of physical phenomena whose evolution in time depends on history terms. It is well known that a Mori-Zwanzig-type projection produces a description of the physical phenomena that depends on history, and also incorporates noise. If the data stream is sampled from the projected Mori-Zwanzig manifold, the description of the phenomenon will always depend on one or more unresolved variables, a priori unknown, and will also incorporate noise. The present work introduces a novel technique able to unveil the presence of such internal variables—although without giving it a precise physical meaning—and to minimize the inherent noise. The method is based upon a refinement of the scale at which the phenomenon is described by means of kernel-PCA techniques. By learning the metriplectic form of the evolution of the physics, the resulting approximation satisfies basic thermodynamic principles such as energy conservation and positive entropy production. Examples are provided that show the potential of the method in both discrete and continuum mechanics.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureWe address the problem of machine learning of constitutive laws when large experimental deviations are present. This is particularly important in soft living tissue modeling, for instance, where large patient-dependent ...
-
Article dans une revue avec comité de lectureBADÍAS, Alberto; CURTIT, Sarah; GONZÁLEZ, David; CUETO, Elias; ALFARO, Icíar; CHINESTA SORIA, Francisco (Wiley, 2019)While modern CFD tools are able to provide the user with reliable and accurate simulations, there is a strong need for interactive design and analysis tools. State-of-the-art CFD software employs massive resources in terms ...
-
Article dans une revue avec comité de lectureUnveiling physical laws from data is seen as the ultimate sign of human intelligence. While there is a growing interest in this sense around the machine learning community, some recent works have attempted to simply ...
-
Article dans une revue avec comité de lectureBADIAS, Alberto; GONZALEZ, David; CUETO, Elias; ALFARO, Icíar; CHINESTA SORIA, Francisco (Institute of Electrical and Electronics Engineers (IEEE), 2022-11)We propose a new methodology to estimate the 3D displacement field of deformable objects from video sequences using standard monocular cameras. We solve in real time the complete (possibly visco-)hyperelasticity problem ...
-
Article dans une revue avec comité de lecturePhysics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements ...