• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Seismic vulnerability assessment of buried pipelines: A 3D parametric study

Article dans une revue avec comité de lecture
Author
GERMOSO, Claudia
1054450 Instituto Tecnológico de Santo Domingo [INTEC]
GONZALEZ, Omar
1072488 Universidad INCE [Universidad INCE]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/20499
DOI
10.1016/j.soildyn.2021.106627
Date
2021
Journal
Soil Dynamics and Earthquake Engineering

Abstract

Pipeline structural analysis is a well-developed topic in engineering and research practice. Since water, oil or gas pipeline systems are a key part of modern development, therefore, it is important to ensure an appropriate behavior under seismic action. In this paper, the seismic response of buried pipelines is numerically simulated using a three-dimensional (3D) parametric model of soil-pipeline interaction. The role of several parameters on both soil and pipeline are incorporated into a 2D-1D space separated representation based on the Proper Generalized Decomposition (PGD) framework, which allows addressing 3D parametric problems while reducing the computational complexity of 1D and 2D characteristic problems. These results can be used for design, safety evaluation and protection of buried pipelines crossing seismic area and can be calculated in real time from the parametric solution of the associated problem within the PGD framework.

Files in this item

Name:
PIMM_SDEE_2021_GERMOSO.pdf
Size:
3.551Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Harmonic-Modal Hybrid Reduced Order Model for the Efficient Integration of Non-Linear Soil Dynamics 
    Article dans une revue avec comité de lecture
    GERMOSO, Claudia; DUVAL, Jean Louis; ccCHINESTA SORIA, Francisco (MDPI, 2020)
    Nonlinear behavior of soils during a seismic event has a predominant role in current site response analysis. Soil response analysis, and more concretely laboratory data, indicate that the stress-strain relationship of soils ...
  • Non-Intrusive In-Plane-Out-of-Plane Separated Representation in 3D Parametric Elastodynamics 
    Article dans une revue avec comité de lecture
    GERMOSO, Claudia; QUARANTA, Giacomo; DUVAL, Jean Louis; ccCHINESTA SORIA, Francisco (MDPI, 2020)
    Mesh-based solution of 3D models defined in plate or shell domains remains a challenging issue nowadays due to the fact that the needed meshes generally involve too many degrees of freedom. When the considered problem ...
  • Damage identification technique by model enrichment for structural elastodynamic problems 
    Article dans une revue avec comité de lecture
    ccDI LORENZO, Daniele; RODRIGUEZ, Sebastian; ccCHAMPANEY, Laurent; ccGERMOSO, Claudia; ccBERINGHIER, Marianne; ccCHINESTA SORIA, Francisco (Elsevier BV, 2024-06)
    Structural Health Monitoring (SHM) techniques are key to monitor the health state of engineering structures, where damage type, location and severity are to be estimated by applying sophisticated techniques to signals ...
  • Data Completion, Model Correction and Enrichment Based on Sparse Identification and Data Assimilation 
    Article dans une revue avec comité de lecture
    DI LORENZO, Daniele; CHAMPANEY, Victor; GERMOSO, Claudia; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (MDPI AG, 2022-07)
    Many models assumed to be able to predict the response of structural systems fail to efficiently accomplish that purpose because of two main reasons. First, some structures in operation undergo localized damage that degrades ...
  • A Data-Driven Learning Method for Constitutive Modeling: Application to Vascular Hyperelastic Soft Tissues 
    Article dans une revue avec comité de lecture
    GONZÁLEZ, David; GARCÍA-GONZÁLEZ, Alberto; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (MDPI, 2020)
    We address the problem of machine learning of constitutive laws when large experimental deviations are present. This is particularly important in soft living tissue modeling, for instance, where large patient-dependent ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales