• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • Voir le document
  • Accueil de SAM
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simulation of Wood Combustion in PATO Using a Detailed Pyrolysis Model Coupled to fireFoam

Article dans une revue avec comité de lecture
Auteur
SCANDELLI, Hermes
ccAHMADI-SENICHAULT, Azita
1002421 Institut de Mécanique et d'Ingénierie [I2M]
RICHARD, Franck
118112 Institut Pprime [UPR 3346] [PPrime [Poitiers]]
ccLACHAUD, Jean

URI
http://hdl.handle.net/10985/21600
DOI
10.3390/app112210570
Date
2021
Journal
Applied Sciences

Résumé

The numerical simulation of fire propagation requires capturing the coupling between wood pyrolysis, which leads to the production of various gaseous species, and the combustion of these species in the flame, which produces the energy that sustains the pyrolysis process. Experimental and numerical works of the fire community are targeted towards improving the description of the pyrolysis process to better predict the rate of production and the chemical nature of the pyrolysis gases. We know that wood pyrolysis leads to the production of a large variety of chemical species: water, methane, propane, carbon monoxide and dioxide, phenol, cresol, hydrogen, etc. With the idea of being able to capitalize on such developments to study more accurately the physics of fire propagation, we have developed a numerical framework that couples a detailed three-dimensional pyrolysis model and fireFoam. In this article, we illustrate the capability of the simulation tool by treating the combustion of a wood log. Wood is considered to be composed of three phases (cellulose, hemicellulose and lignin), each undergoing parallel degradation processes leading to the production of methane and hydrogen. We chose to simplify the gas mixture for this first proof of concept of the coupling of a multi-species pyrolysis process and a flame. In the flame, we consider two separate finite-rate combustion reactions for methane and hydrogen. The flame evolves during the simulation according to the concentration of the two gaseous species produced from the material. It appears that introducing different pyrolysis species impacts the temperature and behavior of the flame.

Fichier(s) constituant cette publication

Nom:
I2M_AS_2021_SCANDELLI
Taille:
3.766Mo
Format:
PDF
Description:
Article principal
Voir/Ouvrir
CC BY
Ce document est diffusé sous licence CC BY

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Computation of the Permeability Tensor of Non-Periodic Anisotropic Porous Media from 3D Images 
    Article dans une revue avec comité de lecture
    SCANDELLI, Hermes; ccAHMADI-SENICHAULT, Azita; LEVET, C.; LACHAUD, Jean (Springer Science and Business Media LLC, 2022-04-13)
    The direct proportionality between the flow rate and the pressure gradient of creeping flows was experimentally discovered by H. Darcy in the 19th century and theoretically justified a couple of decades ago using upscaling ...
  • Experimental investigation and tomography analysis of Darcy-Forchheimer flows in thermal protection systems 
    Article dans une revue avec comité de lecture
    ccLIU, Shaolin; ccAHMADI-SENICHAULT, Azita; SCANDELLI, Hermes; ccLACHAUD, Jean (Elsevier BV, 2024-05)
    n thermal protection systems (TPS), Darcy’s law or Darcy-Forchheimer’s law is employed to model the pyrolysis gas flow within the anisotropic porous ablator depending on the flow regime considered. A key challenge with ...
  • Two-temperature ablative material response model with application to Stardust and MSL atmospheric entries 
    Article dans une revue avec comité de lecture
    SCANDELLI, Hermes; ccAHMADI, Azita; ccLACHAUD, Jean (Elsevier BV, 2023-06)
    Ablative material response codes currently in use consider local thermal equilibrium between the solid phases and the pyrolysis gases. For typical entry conditions, this hypothesis may be justified by the fact that the ...
  • Development and validation of a local thermal non-equilibrium model for high-temperature thermal energy storage in packed beds 
    Article dans une revue avec comité de lecture
    ccLIU, Shaolin; ccAHMADI-SENICHAULT, Azita; ccLEVET, Cyril; ccLACHAUD, Jean (Elsevier BV, 2024-02)
    High-temperature thermal energy storage (TES) in packed beds is gaining interest for industrial energy recovery. The wide range of temperature distributions causes significant variations in thermophysical properties of ...
  • Origin of the inertial deviation from Darcy's law: An investigation from a microscopic flow analysis on two-dimensional model structures 
    Article dans une revue avec comité de lecture
    AGNAOU, Mehrez; LASSEUX, Didier; ccAHMADI-SENICHAULT, Azita (American Physical Society (APS), 2017)
    Inertial flow in porous media occurs in many situations of practical relevance among which one can cite flows in column reactors, in filters, in aquifers, or near wells for hydrocarbon recovery. It is characterized by a ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales