Advanced Meta-Modeling framework combining Machine Learning and Model Order Reduction towards real-time virtual testing of woven composite laminates in nonlinear regime
Article dans une revue avec comité de lecture
Date
2025-03Journal
Composites Science and TechnologyAbstract
This paper presents an advanced meta-modeling framework that efficiently combines Machine Learning and Model Order Reduction (MOR) techniques for real-time virtual testing of woven composite materials. The framework is specifically de signed to develop a multiparametric solution capable of accurately predicting the macroscopic nonlinear stress–strain curves of woven composite laminates submitted to loading–unloading paths. It takes into account five key microstructural parameters: yarn weft width, yarn warp width, yarn spacing, fabric thickness as well as the reinforcement orientation. The methodology employs the Proper Orthogonal Decomposition (POD) technique to decompose the stress–strain curves, extracting principal features that effectively characterize the overall composite’s response. Subsequently, a Random Forest machine learning model is applied to interpolate these features across the microstructural parameter space, allowing for rapid retrieval of corresponding features for any new laminate configuration in the nonlinear regime. A key advantages of this approach is its capacity to dynamically generate extensive virtual test databases, in real-time, across a wide range of composite laminate configurations. This capability provides a comprehensive and efficient tool for analyzing and optimizing composite performance while substantially reducing both experimental and computational costs. Furthermore, to enhance usability for engineers and researchers, this multiparametric solution has been integrated into a user-friendly Graphical User Interface (GUI) application. This GUI empowers users to easily explore various laminate configurations, visualize results, and conduct virtual testing, establishing the framework as a powerful tool for real-time virtual testing and in-depth analysis of microstructural effects on composite materials.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureEL FALLAKI IDRISSI, Mohammed;
PRAUD, Francis; CHAMPANEY, Victor;
CHINESTA SORIA, Francisco;
MERAGHNI, Fodil (Elsevier, 2022-09)
In this paper, a multiparametric solution of the stiffness properties of woven composites involving several microstructure parameters is performed. For this purpose, non-intrusive PGD-based methods are employed. From offline ... -
Article dans une revue avec comité de lectureEL FALLAKI IDRISSI, M.;
PRAUD, Francis;
MERAGHNI, Fodil;
CHINESTA SORIA, Francisco;
CHATZIGEORGIOU, George (Elsevier BV, 2024-05)
The complex behavior of inelastic woven composites stems primarily from their inherent heterogeneity. Achieving accurate predictions of their linear and nonlinear responses, while considering their microstructures, appears ... -
Communication avec acte
EL FALLAKI IDRISSI, Mohammed;
PRAUD, Francis;
CHINESTA SORIA, Francisco;
MERAGHNI, Foudil (Association pour les MAtériaux Composites (AMAC), 2023-07)
La modélisation multi-échelle non-linéaire par éléments finis des composites reste aujourd’hui un défi dans des applications industrielles. En effet, son utilisation nécessite une puissance de calcul élevée et donc souvent ... -
Article dans une revue avec comité de lectureTIKARROUCHINE, El-Hadi; CHATZIGEORGIOU, George;
PRAUD, Francis; PIOTROWSKI, Boris; CHEMISKY, Yves;
MERAGHNI, Fodil (Elsevier, 2018)
In this paper, a two scale Finite Element method (FE2 ), is presented to predict the non-linear macroscopic response of 3D composite structures with periodic microstructure that exhibit a time-dependent response. The ... -
Conférence invitéeTIKARROUCHINE, El-Hadi;
PRAUD, Francis; CHATZIGEORGIOU, George; PIOTROWSKI, Boris; CHEMISKY, Yves;
MERAGHNI, Fodil (2017)
Dans ce papier, une technique de modélisation multi-échelle (EF2) basée sur le principe d’homogénéisation périodique a été développée pour décrire le comportement des structures composites 3D avec un comportement ...