• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advanced Meta-Modeling framework combining Machine Learning and Model Order Reduction towards real-time virtual testing of woven composite laminates in nonlinear regime

Article dans une revue avec comité de lecture
Author
ccEL FALLAKI IDRISSI, Mohammed
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
PASQUALE, Angelo
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccMERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
PRAUD, Francis
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
CHINESTA, Francisco
564849 ESI Group [ESI Group]
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/26061
DOI
10.1016/j.compscitech.2025.111055
Date
2025-03
Journal
Composites Science and Technology

Abstract

This paper presents an advanced meta-modeling framework that efficiently combines Machine Learning and Model Order Reduction (MOR) techniques for real-time virtual testing of woven composite materials. The framework is specifically de signed to develop a multiparametric solution capable of accurately predicting the macroscopic nonlinear stress–strain curves of woven composite laminates submitted to loading–unloading paths. It takes into account five key microstructural parameters: yarn weft width, yarn warp width, yarn spacing, fabric thickness as well as the reinforcement orientation. The methodology employs the Proper Orthogonal Decomposition (POD) technique to decompose the stress–strain curves, extracting principal features that effectively characterize the overall composite’s response. Subsequently, a Random Forest machine learning model is applied to interpolate these features across the microstructural parameter space, allowing for rapid retrieval of corresponding features for any new laminate configuration in the nonlinear regime. A key advantages of this approach is its capacity to dynamically generate extensive virtual test databases, in real-time, across a wide range of composite laminate configurations. This capability provides a comprehensive and efficient tool for analyzing and optimizing composite performance while substantially reducing both experimental and computational costs. Furthermore, to enhance usability for engineers and researchers, this multiparametric solution has been integrated into a user-friendly Graphical User Interface (GUI) application. This GUI empowers users to easily explore various laminate configurations, visualize results, and conduct virtual testing, establishing the framework as a powerful tool for real-time virtual testing and in-depth analysis of microstructural effects on composite materials.

Files in this item

Name:
LEM3_CST_2025_MERAGHNI.pdf
Size:
3.932Mb
Format:
PDF
Embargoed until:
2025-06-01
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Multiparametric modelling of composite materials based on non-intrusive PGD informed by multiscale analyses: Application for real-time stiffness prediction of woven composites 
    Article dans une revue avec comité de lecture
    EL FALLAKI IDRISSI, Mohammed; PRAUD, Francis; CHAMPANEY, Victor; ccCHINESTA SORIA, Francisco; ccMERAGHNI, Fodil (Elsevier, 2022-09)
    In this paper, a multiparametric solution of the stiffness properties of woven composites involving several microstructure parameters is performed. For this purpose, non-intrusive PGD-based methods are employed. From offline ...
  • Multiscale Thermodynamics-Informed Neural Networks (MuTINN) towards fast and frugal inelastic computation of woven composite structures 
    Article dans une revue avec comité de lecture
    EL FALLAKI IDRISSI, M.; PRAUD, Francis; ccMERAGHNI, Fodil; ccCHINESTA SORIA, Francisco; ccCHATZIGEORGIOU, George (Elsevier BV, 2024-05)
    The complex behavior of inelastic woven composites stems primarily from their inherent heterogeneity. Achieving accurate predictions of their linear and nonlinear responses, while considering their microstructures, appears ...
  • PGD non-intrusive pour la simulation multiparamétrique en temps réel du comportement non-linéaire des composites à renforts tissés intégrant les paramètres microstructuraux 
    Communication avec acte
    ccEL FALLAKI IDRISSI, Mohammed; PRAUD, Francis; ccCHINESTA SORIA, Francisco; ccMERAGHNI, Foudil (Association pour les MAtériaux Composites (AMAC), 2023-07)
    La modélisation multi-échelle non-linéaire par éléments finis des composites reste aujourd’hui un défi dans des applications industrielles. En effet, son utilisation nécessite une puissance de calcul élevée et donc souvent ...
  • Multiscale Thermodynamics-Informed Neural Networks (MuTINN) for nonlinear structural computations of recycled thermoplastic composites 
    Article dans une revue avec comité de lecture
    SEKKAL, S.E.; ccEL FALLAKI IDRISSI, Mohammed; ccMERAGHNI, Fodil; ccCHATZIGEORGIOU, George; ccCHINESTA SORIA, Francisco (Elsevier BV, 2025-04)
    Fiber-reinforced thermoplastic composites are increasingly valued for their light-weight properties, mechanical performance, and recyclability, yet the recycling process introduces microstructural heterogeneities that ...
  • Three-dimensional FE2 method for the simulation of non-linear, rate-dependent response of composite structures 
    Article dans une revue avec comité de lecture
    TIKARROUCHINE, El-Hadi; CHATZIGEORGIOU, George; PRAUD, Francis; PIOTROWSKI, Boris; CHEMISKY, Yves; ccMERAGHNI, Fodil (Elsevier, 2018)
    In this paper, a two scale Finite Element method (FE2 ), is presented to predict the non-linear macroscopic response of 3D composite structures with periodic microstructure that exhibit a time-dependent response. The ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales