Multiscale Thermodynamics-Informed Neural Networks (MuTINN) for nonlinear structural computations of recycled thermoplastic composites
Article dans une revue avec comité de lecture
Author

178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
302796 Centre technique des industries mécaniques [Cetim, France] [Cetim]


178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
Date
2025-04Journal
Composites Part B: EngineeringAbstract
Fiber-reinforced thermoplastic composites are increasingly valued for their light-weight properties, mechanical performance, and recyclability, yet the recycling process introduces microstructural heterogeneities that degrade their mechanical behavior. To address the challenges from a modeling point of view, this study proposes a Multiscale Thermodynamics-Informed Neural Network (MuTINN) approach to predict the nonlinear, anisotropic response of recycled glass fiber-reinforced polyamide 6 composites, with the primary aim of enabling structural simulations in significantly reduced time compared to traditional FE² approaches. The MuTINN framework integrates thermodynamic principles with artificial neural networks (ANNs) to capture the evolution of internal state variables and Helmholtz free energy, eliminating the need for memory-based networks. Finite element simulations of representative
volume elements (RVEs) under diverse loading conditions are utilized to provide off-line data for the MuTINN. The latter accurately predicts stress, strain, and energy quantities, accounting for the anisotropic and heterogeneous nature of recycled materials. While trained using numerical simulations at 0◦ and 90◦ orientation specimens, the proposed framework succesfully predicts the response for specimens with 45◦ orientation with error in the maximum stress level up to 1.6%. The model is implemented into commercial finite element analysis (FEA) software via a Meta-UMAT framework, allowing efficient macroscale simulations. Validation against experimental data and finite element-based periodic homogenization confirms the framework’s accuracy for structural computations.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureEL FALLAKI IDRISSI, M.; PRAUD, Francis;
MERAGHNI, Fodil;
CHINESTA SORIA, Francisco;
CHATZIGEORGIOU, George (Elsevier BV, 2024-05)
The complex behavior of inelastic woven composites stems primarily from their inherent heterogeneity. Achieving accurate predictions of their linear and nonlinear responses, while considering their microstructures, appears ... -
Article dans une revue avec comité de lectureEL FALLAKI IDRISSI, Mohammed; PRAUD, Francis; CHAMPANEY, Victor;
CHINESTA SORIA, Francisco;
MERAGHNI, Fodil (Elsevier, 2022-09)
In this paper, a multiparametric solution of the stiffness properties of woven composites involving several microstructure parameters is performed. For this purpose, non-intrusive PGD-based methods are employed. From offline ... -
Article dans une revue avec comité de lecture
EL FALLAKI IDRISSI, Mohammed; PASQUALE, Angelo;
MERAGHNI, Fodil; PRAUD, Francis; CHINESTA, Francisco (Elsevier BV, 2025-03)
This paper presents an advanced meta-modeling framework that efficiently combines Machine Learning and Model Order Reduction (MOR) techniques for real-time virtual testing of woven composite materials. The framework is ... -
Communication avec acte
EL FALLAKI IDRISSI, Mohammed; PRAUD, Francis;
CHINESTA SORIA, Francisco;
MERAGHNI, Foudil (Association pour les MAtériaux Composites (AMAC), 2023-07)
La modélisation multi-échelle non-linéaire par éléments finis des composites reste aujourd’hui un défi dans des applications industrielles. En effet, son utilisation nécessite une puissance de calcul élevée et donc souvent ... -
Communication avec acteEDDINE SEKKAL, Saif;
MERAGHNI, Fodil;
CHATZIGEORGIOU, George; PELASCINI, Frédéric (Association pour les MAtériaux Composites (AMAC), 2023-07)
Les composites à base de polymères thermoplastiques renforcés de fibres sont de plus en plus utilisés dans l’industrie du transport pour leurs excellentes performances mécaniques. Toutefois, leur impact sur l’environnement ...