Comparison of Reduction Methods for Finite Element Geometrically Nonlinear Beam Structures
Article dans une revue avec comité de lecture
Résumé
The aim of this contribution is to present numerical comparisons of model-order reduction methods for geometrically nonlinear structures in the general framework of finite element (FE) procedures. Three different methods are compared: the implicit condensation and expansion (ICE), the quadratic manifold computed from modal derivatives (MD), and the direct normal form (DNF) procedure, the latter expressing the reduced dynamics in an invariant-based span of the phase space. The methods are first presented in order to underline their common points and differences, highlighting in particular that ICE and MD use reduction subspaces that are not invariant. A simple analytical example is then used in order to analyze how the different treatments of quadratic nonlinearities by the three methods can affect the predictions. Finally, three beam examples are used to emphasize the ability of the methods to handle curvature (on a curved beam), 1:1 internal resonance (on a clamped-clamped beam with two polarizations), and inertia nonlinearity (on a cantilever beam).
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureVIZZACCARO, Alessandra; GIVOIS, Arthur; LONGOBARDI, Pierluigi; SHEN, Yichang; DEÜ, Jean-François; SALLES, Loïc; TOUZÉ, Cyril; THOMAS, Olivier (Springer Verlag, 2020)Non-intrusive methods have been used since two decades to derive reduced-order models for geometrically nonlinear structures, with a particular emphasis on the so-called STiffness Evaluation Procedure (STEP), relying on ...
-
Article dans une revue avec comité de lectureMARTIN, Adrien; OPRENI, Andrea; VIZZACCARO, Alessandra; DEBEURRE, Marielle; SALLES, Loic; FRANGI, Attilio; THOMAS, Olivier; TOUZÉ, Cyril (Centre pour la Communication Scientifique Directe (CCSD), 2023-06)The direct parametrisation method for invariant manifolds is a nonlinear reduction technique which derives nonlinear mappings and reduced-order dynamics that describe the evolution of dynamical systems along a low-dimensional ...
-
Article dans une revue avec comité de lectureSHAMI, Zein Alabidin; SHEN, Yichang; TOUZÉ, Cyril; THOMAS, Olivier; GIRAUD-AUDINE, Christophe (Springer Science and Business Media LLC, 2022-08)This article considers the nonlinear dynamics of coupled oscillators featuring strong coupling in 1:2 internal resonance. In forced oscillations, this particular interaction is the source of energy exchange, leading to a ...
-
Article dans une revue avec comité de lectureGIVOIS, Arthur; TAN, Jin-Jack; TOUZÉ, Cyril; THOMAS, Olivier (Springer Science and Business Media LLC, 2020-02)A system composed of two cubic nonlinear oscillators with close natural frequencies, and thus displaying a 1:1 internal resonance, is studied both theoretically and experimentally, with a special emphasis on the free ...
-
Article dans une revue avec comité de lectureThis paper aims at reviewing nonlinear methods for model order reduction in structures with geometric nonlinearity, with a special emphasis on the techniques based on invariant manifold theory. Nonlinear methods differ ...