• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ductility limit prediction for polycrystalline aggregates using a CPFEM-based multiscale framework

Article dans une revue avec comité de lecture
Author
ZHU, Jianchang
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
142577 Huazhong University of Science and Technology [Wuhan] [HUST]
ccBEN BETTAIEB, Mohamed
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
243747 Labex DAMAS
ZHOU, Shuai
243747 Labex DAMAS
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccABED-MERAIM, Farid 
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
243747 Labex DAMAS

URI
http://hdl.handle.net/10985/23881
DOI
10.1016/j.ijplas.2023.103671
Date
2023-08
Journal
International Journal of Plasticity

Abstract

The ductility of polycrystalline aggregates is usually limited by two main phenomena: plastic strain localization and void coalescence. The goal of this contribution is to develop a new multiscale framework, based on the crystal plasticity finite element method (CPFEM), for the prediction of ductility limits set by these two phenomena for porous and non-porous polycrystalline aggregates. This numerical framework is based on the combination of crystal plasticity constitutive modeling with the periodic homogenization scheme. Within this strategy, the single crystal constitutive modeling follows a finite strain rate-independent approach, where the plastic flow is governed by the classical Schmid law. Thereby, the competition between the two aforementioned phenomena, which limit ductility, is thoroughly analyzed using the bifurcation theory and a strain-based coalescence criterion. To cover a wide range of mechanical states in this analysis, two types of loadings are applied to the studied aggregates: proportional triaxial stress paths and proportional in-plane strain paths. The developed CPFEM-based framework is well suited to account for essential microstructural features: pre-existence of spherical voids, crystallographic and morphological anisotropy, matrix polycrystallinity and interactions between grains and their surrounding medium. Extensive sensitivity studies are performed to analyze the impact of these microstructural features on the ductility limit predictions. The main trends obtained by classical phenomenological frameworks are extended here within the framework of crystal plasticity constitutive modeling.

Files in this item

Name:
LEM3_IJP_2023_BENBETTAIEB.pdf
Size:
10.95Mb
Format:
PDF
Embargoed until:
2024-03-01
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • A physically-based mixed hardening model for the prediction of the ductility limits of thin metal sheets using a CPFE approach 
    Article dans une revue avec comité de lecture
    ZHOU, Shuai; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid  (Elsevier BV, 2024-03-21)
    An advanced Crystal Plasticity Finite Element (CPFE) approach is developed to accurately predict the ductility limit strains of thin metal sheets. This method uses polycrystalline unit cells to represent the metal sheets ...
  • Investigation of the effect of morphological and crystallographic textures on the ductility limits of thin metal sheets using a CPFEM-based approach 
    Article dans une revue avec comité de lecture
    ZHOU, Shuai; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid  (Elsevier BV, 2024-07)
    The current contribution investigates the effect of some relevant microstructural parameters (specifically, morphological and crystallographic textures) on the ductility limits of polycrystalline aggregates using the Crystal ...
  • Numerical investigation of the ductility limit of perforated sheets 
    Communication sans acte
    ZHU, Jianchang; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid  (2018)
    Perforated sheets are widely used in automotive, architecture, pollution control, and other fields. Because perforated sheets are lightweight and aesthetically attractive, and also allow specific elements such as water, ...
  • Numerical investigation of necking in perforated sheets using the periodic homogenization approach 
    Article dans une revue avec comité de lecture
    ZHU, Jianchang; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid  (Elsevier, 2020)
    Due to their attractive properties, perforated sheets are increasingly used in a number of industrial applications, such as automotive, architecture, pollution control, etc. Consequently, the accurate modeling of the ...
  • Investigation of the competition between void coalescence and macroscopic strain localization using the periodic homogenization multiscale scheme 
    Article dans une revue avec comité de lecture
    ZHU, Jianchang; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid  (Elsevier, 2020)
    In most voided metallic materials, the failure process is often driven by the competition between the phenomena of void coalescence and plastic strain localization. This paper proposes a new numerical approach that allows ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales