• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

A physically-based mixed hardening model for the prediction of the ductility limits of thin metal sheets using a CPFE approach

Article dans une revue avec comité de lecture
Auteur
ZHOU, Shuai
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccBEN BETTAIEB, Mohamed
ccABED-MERAIM, Farid 
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/25001
DOI
10.1016/j.ijplas.2024.103946
Date
2024-03-21
Journal
International Journal of Plasticity

Résumé

An advanced Crystal Plasticity Finite Element (CPFE) approach is developed to accurately predict the ductility limit strains of thin metal sheets. This method uses polycrystalline unit cells to represent the metal sheets at the macroscopic level. The macroscopic behavior of these unit cells is determined based on that of the constituent single crystals using the periodic homogenization multiscale scheme. At the single crystal scale, the constitutive framework follows a finite strain rate-independent formulation, with the flow rule governed by the Schmid law. The evolution of the single crystal yield surface is described through a physically based mixed hardening model, where isotropic hardening is characterized by a dislocation density-based formulation, while kinematic hardening is described by the nonlinear Armstrong–Frederick model. The unit cell ductility limit strains are predicted by the Rice bifurcation criterion. The reliability of the mixed hardening model in accurately reproducing mechanical behavior is confirmed through simulations of uniaxial tension/compression loading. Then, the developed computational strategy is used to investigate the impact of key microstructural hardening parameters on the initiation of localized necking under linear strain paths. The numerical predictions reveal the significant influence of these parameters on the formability of thin metal sheets. Additionally, the analysis of ductility limits under non-linear strain paths demonstrates a strong dependency of the numerical predictions on strain path changes. The numerical predictions obtained by the developed CPFE multiscale strategy are compared with experimental results from the literature. In summary, the proposed approach provides a reliable tool for accurately predicting the ductility limits of thin metal sheets, offering valuable insights for engineering applications.

Fichier(s) constituant cette publication

Nom:
LEM3-IJP-BENBETTAIEB-2024.pdf
Taille:
5.641Mo
Format:
PDF
Fin d'embargo:
2024-09-21
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Ductility limit prediction for polycrystalline aggregates using a CPFEM-based multiscale framework 
    Article dans une revue avec comité de lecture
    ZHU, Jianchang; ccBEN BETTAIEB, Mohamed; ZHOU, Shuai; ccABED-MERAIM, Farid  (Elsevier BV, 2023-08)
    The ductility of polycrystalline aggregates is usually limited by two main phenomena: plastic strain localization and void coalescence. The goal of this contribution is to develop a new multiscale framework, based on the ...
  • Investigation of the effect of morphological and crystallographic textures on the ductility limits of thin metal sheets using a CPFEM-based approach 
    Article dans une revue avec comité de lecture
    ZHOU, Shuai; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid  (Elsevier BV, 2024-07)
    The current contribution investigates the effect of some relevant microstructural parameters (specifically, morphological and crystallographic textures) on the ductility limits of polycrystalline aggregates using the Crystal ...
  • A crystal plasticity-damage coupled finite element framework for predicting mechanical behavior and ductility limits of thin metal sheets 
    Article dans une revue avec comité de lecture
    ZHOU, S.; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid (2025-04)
    A new crystal plasticity finite element (CPFE) approach is developed to predict the mechanical behavior and ductility limits of thin metal sheets. Within this approach, a representative volume element (RVE) is chosen to ...
  • Prediction of the Ductility Limit of Magnesium AZ31B Alloy 
    Chapitre d'ouvrage scientifique
    JEDIDI, Mohamed Yassine; ccBEN BETTAIEB, Mohamed; BOUGUECHA, Anas; ccABED-MERAIM, Farid ; KHABOU, Mohamed Taoufik; HADDAR, Mohamed (Springer International Publishing, 2019)
    In many engineering applications (automotive, computer and mobile device industries, etc.), magnesium alloys have been widely used owing to their interesting physical and mechanical parameters. However, magnesium alloys ...
  • An anisotropic model with linear perturbation technique to predict HCP sheet metal ductility limit 
    Communication avec acte
    JEDIDI, Mohamed Yassine; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid ; KHABOU, Mohamed Taoufik; BOUGUECHA, Anas; HADDAR, Mohamed (2021)
    In this paper, hexagonal closed packed (HCP) sheet metal ductility for a viscoplastic material is analyzed by using a linear perturbation technique. It can be used for the analysis of localized necking. This technique is ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales