• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Impact of morphological and crystallographic textures on the formability limits of thin metal sheets using a CPFEM-based approach

Communication avec acte
Author
ZHOU, Shuai
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccBEN BETTAIEB, Mohamed
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
243747 Labex DAMAS
ccABED-MERAIM, Farid
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
243747 Labex DAMAS

URI
http://hdl.handle.net/10985/26462
Date
2024-05-13

Abstract

The objective of this contribution is to investigate the influence of morphological and crystallographic textures on the formability limits of polycrystalline aggregates using the Crystal Plasticity Finite Element Method (CPFEM). The overall behavior of these polycrystalline aggregates is derived from that of the constituent single crystals by the periodic homogenization technique. The single crystal behavior is modeled by a rate-independent finite strain formulation, with the plastic flow rule governed by the classical Schmid law. Ultimately, the prediction of the formability limits is achieved by applying the Rice bifurcation criterion.

Files in this item

Name:
LEM3_CSMA_2024_ZHOU_BEN_BETTAI ...
Size:
4.856Mb
Format:
PDF
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Ductility limit prediction for polycrystalline aggregates using a CPFEM-based multiscale framework 
    Article dans une revue avec comité de lecture
    ZHU, Jianchang; ccBEN BETTAIEB, Mohamed; ZHOU, Shuai; ccABED-MERAIM, Farid (Elsevier BV, 2023-08)
    The ductility of polycrystalline aggregates is usually limited by two main phenomena: plastic strain localization and void coalescence. The goal of this contribution is to develop a new multiscale framework, based on the ...
  • A physically-based mixed hardening model for the prediction of the ductility limits of thin metal sheets using a CPFE approach 
    Article dans une revue avec comité de lecture
    ZHOU, Shuai; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid (Elsevier BV, 2024-03-21)
    An advanced Crystal Plasticity Finite Element (CPFE) approach is developed to accurately predict the ductility limit strains of thin metal sheets. This method uses polycrystalline unit cells to represent the metal sheets ...
  • Investigation of the effect of morphological and crystallographic textures on the ductility limits of thin metal sheets using a CPFEM-based approach 
    Article dans une revue avec comité de lecture
    ZHOU, Shuai; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid (Elsevier BV, 2024-07)
    The current contribution investigates the effect of some relevant microstructural parameters (specifically, morphological and crystallographic textures) on the ductility limits of polycrystalline aggregates using the Crystal ...
  • Ductility limit predictions for porous materials using a damage coupled CPFEM approach 
    Communication sans acte
    ccZHOU, Shuai; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid (2024-05)
    Accurate predictions of ductility limits play a crucial role in product design and manufacturing, offering substantial cost reductions in development. In this investigation, attention is focused on the prediction of ductility ...
  • A crystal plasticity-damage coupled finite element framework for predicting mechanical behavior and ductility limits of thin metal sheets 
    Article dans une revue avec comité de lecture
    ZHOU, S.; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid (2025-04)
    A new crystal plasticity finite element (CPFE) approach is developed to predict the mechanical behavior and ductility limits of thin metal sheets. Within this approach, a representative volume element (RVE) is chosen to ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales