• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ductility limit predictions for porous materials using a damage coupled CPFEM approach

Communication sans acte
Author
ccZHOU, Shuai
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccBEN BETTAIEB, Mohamed
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccABED-MERAIM, Farid
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/26502
Date
2024-05

Abstract

Accurate predictions of ductility limits play a crucial role in product design and manufacturing, offering substantial cost reductions in development. In this investigation, attention is focused on the prediction of ductility limits for porous materials. Unlike previous contributions [1,2], we integrate a microscopic damage model based on thermodynamics into the crystal plasticity finite element method (CPFEM) framework in the current study. In this regard, Representative Volume Elements (RVEs) are selected to represent the porous materials at the macroscopic level and an ABAQUS Voronoi Toolbox is developed to generate these RVEs. The macroscopic behavior of these RVEs is determined from that of the constituent single crystals using the periodic homogenization multiscale scheme [1,2,3]. At the single crystal scale, the constitutive equations follow a finite strain rate-independent framework, where the damage variables are defined for each individual slip system. The plastic flow rule is governed by the classical Schmid law. The proposed model is applied to predict the ductility limits for porous materials using the Rice bifurcation criterion. The results show that the damage coupled CPFEM approach accurately predicts the ductility limits, offering valuable tools for optimizing the mechanical properties of advanced materials.

Files in this item

Name:
LEM3_EMMC19_2024_Ben-Bettaieb- ...
Size:
511.0Kb
Format:
PDF
View/Open

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Related items

Showing items related by title, author, creator and subject.

  • Ductility limit prediction for polycrystalline aggregates using a CPFEM-based multiscale framework 
    Article dans une revue avec comité de lecture
    ZHU, Jianchang; ccBEN BETTAIEB, Mohamed; ZHOU, Shuai; ccABED-MERAIM, Farid (Elsevier BV, 2023-08)
    The ductility of polycrystalline aggregates is usually limited by two main phenomena: plastic strain localization and void coalescence. The goal of this contribution is to develop a new multiscale framework, based on the ...
  • A physically-based mixed hardening model for the prediction of the ductility limits of thin metal sheets using a CPFE approach 
    Article dans une revue avec comité de lecture
    ZHOU, Shuai; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid (Elsevier BV, 2024-03-21)
    An advanced Crystal Plasticity Finite Element (CPFE) approach is developed to accurately predict the ductility limit strains of thin metal sheets. This method uses polycrystalline unit cells to represent the metal sheets ...
  • Investigation of the effect of morphological and crystallographic textures on the ductility limits of thin metal sheets using a CPFEM-based approach 
    Article dans une revue avec comité de lecture
    ZHOU, Shuai; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid (Elsevier BV, 2024-07)
    The current contribution investigates the effect of some relevant microstructural parameters (specifically, morphological and crystallographic textures) on the ductility limits of polycrystalline aggregates using the Crystal ...
  • Impact of morphological and crystallographic textures on the formability limits of thin metal sheets using a CPFEM-based approach 
    Communication avec acte
    ZHOU, Shuai; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid (2024-05-13)
    The objective of this contribution is to investigate the influence of morphological and crystallographic textures on the formability limits of polycrystalline aggregates using the Crystal Plasticity Finite Element Method ...
  • A crystal plasticity-damage coupled finite element framework for predicting mechanical behavior and ductility limits of thin metal sheets 
    Article dans une revue avec comité de lecture
    ZHOU, S.; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid (2025-04)
    A new crystal plasticity finite element (CPFE) approach is developed to predict the mechanical behavior and ductility limits of thin metal sheets. Within this approach, a representative volume element (RVE) is chosen to ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales