• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • View Item
  • Home
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predictive control for a single-blow cold upsetting using surrogate modeling for a digital twin

Article dans une revue avec comité de lecture
Author
ccURIBE, David
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccBAUDOUIN, Cyrille
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccDURAND, Camille
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccBIGOT, Regis
107452 Laboratoire de Conception Fabrication Commande [LCFC]

URI
http://hdl.handle.net/10985/24570
DOI
10.1007/s12289-023-01803-x
Date
2023-12
Journal
International Journal of Material Forming

Abstract

In the realm of forging processes, the challenge of real-time process control amid inherent variabilities is prominent. To tackle this challenge, this article introduces a Proper Orthogonal Decomposition (POD)-based surrogate model for a one-blow cold upsetting process in copper billets. This model effectively addresses the issue by accurately forecasting energy setpoints, billet geometry changes, and deformation fields following a single forging operation. It utilizes Bézier curves to parametrically capture billet geometries and employs POD for concise deformation field representation. With a substantial database of 36,000 entries from 60 predictive numerical simulations using FORGE® software, the surrogate model is trained using a multilayer perceptron artificial neural network (MLP ANN) featuring 300 neurons across 3 hidden layers using the Keras API within the TensorFlow framework in Python. Model validation against experimental and numerical data underscores its precision in predicting energy setpoints, geometry changes, and deformation fields. This advancement holds the potential for enhancing real-time process control and optimization, facilitating the development of a digital twin for the process.

Files in this item

Name:
LCFC_IJMF_2023_URIBE.pdf
Size:
2.494Mb
Format:
PDF
Embargoed until:
2024-07-01
View/Open

Collections

  • Laboratoire de Conception Fabrication Commande (LCFC)

Related items

Showing items related by title, author, creator and subject.

  • Accurate real-time modeling for multiple-blow forging 
    Article dans une revue avec comité de lecture
    ccURIBE, David; ccDURAND, Camille; ccBAUDOUIN, Cyrille; ccBIGOT, Regis (Springer Science and Business Media LLC, 2024-10)
    Numerical simulations are crucial for predicting outcomes in forging processes but often neglect dynamic interactions within forming tools and presses. This study proposes an approach for achieving accurate real-time ...
  • Enhancing metal-forming predictions with VR-infused digital twin models 
    Communication avec acte
    ccURIBE, David; ccBAUDOUIN, Cyrille; ccLOCARD, Yoan; ccDURAND, Camille; ccBIGOT, Regis (Materials Research Forum LLC, 2024-05)
    This article presents a two-step method to enhance metal-forming predictions by integrating Virtual Reality (VR) into Digital Twin models, focusing on single-blow cold copper upsetting operations. The process begins with ...
  • Enhancing data representation in forging processes: Investigating discretization and R-adaptivity strategies with Proper Orthogonal Decomposition reduction 
    Article dans une revue avec comité de lecture
    ccURIBE, David; ccDURAND, Camille; ccBAUDOUIN, Cyrille; ccBIGOT, Regis (Elsevier, 2024-12)
    Effective data reduction techniques are crucial for enhancing computational efficiency in complex industrial processes such as forging. In this study, we investigate various discretization and mesh adaptivity strategies ...
  • Towards the Real-Time Piloting of a Forging Process: Development of a Surrogate Model for a Multiple Blow Operation 
    Communication avec acte
    URIBE, David; ccDURAND, Camille; ccBAUDOUIN, Cyrille; KRUMPIPE, Pierre; ccBIGOT, Regis (Springer Nature Switzerland, 2023-08)
    Forging processes are defined by variables related to the workpiece, the tools, the machine, and the process itself, and these variables are called process variables. They have a direct impact on the quality of the finished ...
  • Real-time forging process control: integrating billet-related surrogate and machine behavior models 
    Article dans une revue avec comité de lecture
    ccURIBE, David; ccDURAND, Camille; ccBAUDOUIN, Cyrille; ccBIGOT, Regis (Springer Science and Business Media LLC, 2025-04)
    This study introduces a predictive surrogate model for real-time control in cold upsetting processes, incorporating both material and machine behaviors. Traditional approaches often simplify machine behavior as rigid or ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales