• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
  • Home
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification of material parameters in low-data limit: application to gradient-enhanced continua

Article dans une revue avec comité de lecture
Author
NGUYEN, Duc-Vinh
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccJEBAHI, Mohamed
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
CHAMPANEY, Victor
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
564849 ESI Group [ESI Group]
1166977 CNRS@CREATE Ltd.

URI
http://hdl.handle.net/10985/24661
DOI
10.1007/s12289-023-01807-7
Date
2024-01
Journal
International Journal of Material Forming

Abstract

Due to the growing trend towards miniaturization, small-scale manufacturing processes have become widely used in various engineering fields to manufacture miniaturized products. These processes generally exhibit complex size effects, making the behavior of materials highly dependent on their geometric dimensions. As a result, accurate understanding and modeling of such effects are crucial for optimizing manufacturing outcomes and achieving high-performance final products. To this end, advanced gradient-enhanced plasticity theories have emerged as powerful tools for capturing these complex phenomena, offering a level of accuracy significantly greater than that provided by classical plasticity approaches. However, these advanced theories often require the identification of a large number of material parameters, which poses a significant challenge due to limited experimental data at small scales and high computation costs. The present paper aims at evaluating and comparing the effectiveness of various optimization techniques, including evolutionary algorithm, response surface methodology and Bayesian optimization, in identifying the material parameter of a recent flexible gradient-enhanced plasticity model developed by the authors. The paper findings represent an attempt to bridge the gap between advanced material behavior theories and their practical industrial applications, by offering insights into efficient and reliable material parameter identification procedures.

Files in this item

Name:
LEM3_IJMF_2024_NGUYEN.pdf
Size:
1.886Mb
Format:
PDF
Embargoed until:
2024-08-01
View/Open
CC BY
This document is available under CC BY license

Collections

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Spatio-temporal physics-informed neural networks to solve boundary value problems for classical and gradient-enhanced continua 
    Article dans une revue avec comité de lecture
    ccNGUYEN, Duc-Vinh; ccJEBAHI, Mohamed; ccCHINESTA SORIA, Francisco (Elsevier BV, 2024-08)
    Recent advances have prominently highlighted physics informed neural networks (PINNs) as an efficient methodology for solving partial differential equations (PDEs). The present paper proposes a proof of concept exploring ...
  • Multiparametric modelling of composite materials based on non-intrusive PGD informed by multiscale analyses: Application for real-time stiffness prediction of woven composites 
    Article dans une revue avec comité de lecture
    EL FALLAKI IDRISSI, Mohammed; ccPRAUD, Francis; CHAMPANEY, Victor; ccCHINESTA SORIA, Francisco; ccMERAGHNI, Fodil (Elsevier, 2022-09)
    In this paper, a multiparametric solution of the stiffness properties of woven composites involving several microstructure parameters is performed. For this purpose, non-intrusive PGD-based methods are employed. From offline ...
  • Optimal velocity planning based on the solution of the Euler-Lagrange equations with a neural network based velocity regression 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; ccDI LORENZO, Daniele; CHAMPANEY, Victor; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (American Institute of Mathematical Sciences (AIMS), 2024-07)
    Trajectory optimization is a complex process that includes an infinite number of possibilities and combinations. This work focuses on a particular aspect of the trajectory optimization, related to the optimization of a ...
  • Parametric analysis and machine learning-based parametric modeling of wire laser metal deposition induced porosity 
    Article dans une revue avec comité de lecture
    LOREAU, Tanguy; CHAMPANEY, Victor; HASCOET, Nicolas; LAMBARRI, Jon; MADARIETA, Mikel; GARMENDIA, Iker; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2022-04)
    Additive manufacturing is an appealing solution to produce geometrically complex parts, difficult to manufacture using traditional technologies. The extreme process conditions, in particular the high temperature, complex ...
  • Parametric Curves Metamodelling Based on Data Clustering, Data Alignment, POD-Based Modes Extraction and PGD-Based Nonlinear Regressions 
    Article dans une revue avec comité de lecture
    ccCHAMPANEY, Victor; PASQUALE, Angelo; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Frontiers, 2022-06)
    In the context of parametric surrogates, several nontrivial issues arise when a whole curve shall be predicted from given input features. For instance, different sampling or ending points lead to non-aligned curves. This ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales