• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification of material parameters in low-data limit: application to gradient-enhanced continua

Article dans une revue avec comité de lecture
Auteur
NGUYEN, Duc-Vinh
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccJEBAHI, Mohamed
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
CHAMPANEY, Victor
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
564849 ESI Group [ESI Group]
1166977 CNRS@CREATE Ltd.

URI
http://hdl.handle.net/10985/24661
DOI
10.1007/s12289-023-01807-7
Date
2024-01
Journal
International Journal of Material Forming

Résumé

Due to the growing trend towards miniaturization, small-scale manufacturing processes have become widely used in various engineering fields to manufacture miniaturized products. These processes generally exhibit complex size effects, making the behavior of materials highly dependent on their geometric dimensions. As a result, accurate understanding and modeling of such effects are crucial for optimizing manufacturing outcomes and achieving high-performance final products. To this end, advanced gradient-enhanced plasticity theories have emerged as powerful tools for capturing these complex phenomena, offering a level of accuracy significantly greater than that provided by classical plasticity approaches. However, these advanced theories often require the identification of a large number of material parameters, which poses a significant challenge due to limited experimental data at small scales and high computation costs. The present paper aims at evaluating and comparing the effectiveness of various optimization techniques, including evolutionary algorithm, response surface methodology and Bayesian optimization, in identifying the material parameter of a recent flexible gradient-enhanced plasticity model developed by the authors. The paper findings represent an attempt to bridge the gap between advanced material behavior theories and their practical industrial applications, by offering insights into efficient and reliable material parameter identification procedures.

Fichier(s) constituant cette publication

Nom:
LEM3_IJMF_2024_NGUYEN.pdf
Taille:
1.886Mo
Format:
PDF
Fin d'embargo:
2024-08-01
Voir/Ouvrir
CC BY
Ce document est diffusé sous licence CC BY

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Spatio-temporal physics-informed neural networks to solve boundary value problems for classical and gradient-enhanced continua 
    Article dans une revue avec comité de lecture
    ccNGUYEN, Duc-Vinh; ccJEBAHI, Mohamed; ccCHINESTA SORIA, Francisco (Elsevier BV, 2024-08)
    Recent advances have prominently highlighted physics informed neural networks (PINNs) as an efficient methodology for solving partial differential equations (PDEs). The present paper proposes a proof of concept exploring ...
  • Multiparametric modelling of composite materials based on non-intrusive PGD informed by multiscale analyses: Application for real-time stiffness prediction of woven composites 
    Article dans une revue avec comité de lecture
    EL FALLAKI IDRISSI, Mohammed; PRAUD, Francis; CHAMPANEY, Victor; ccCHINESTA SORIA, Francisco; ccMERAGHNI, Fodil (Elsevier, 2022-09)
    In this paper, a multiparametric solution of the stiffness properties of woven composites involving several microstructure parameters is performed. For this purpose, non-intrusive PGD-based methods are employed. From offline ...
  • Parametric Damage Mechanics Empowering Structural Health Monitoring of 3D Woven Composites 
    Article dans une revue avec comité de lecture
    ccJACOT, Maurine; CHAMPANEY, Victor; ccCHINESTA SORIA, Francisco; ccCORTIAL, Julien (2023)
    This paper presents a data-driven structural health monitoring (SHM) method by the use of so-called reduced-order models relying on an offline training/online use for unidirectional fiber and matrix failure detection in a ...
  • Empowering optimal transport matching algorithm for the construction of surrogate parametric metamodel 
    Article dans une revue avec comité de lecture
    ccJACOT, Maurine; CHAMPANEY, Victor; ccTORREGROSA JORDAN, Sergio; ccCORTIAL, Julien; ccCHINESTA SORIA, Francisco (EDP Sciences, 2024-03)
    Resolving Partial Differential Equations (PDEs) through numerical discretization methods like the Finite Element Method presents persistent challenges associated with computational complexity, despite achieving a satisfactory ...
  • Regularized regressions for parametric models based on separated representations 
    Article dans une revue avec comité de lecture
    ccSANCARLOS, Abel; CHAMPANEY, Victor; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (Springer Open, 2023-03)
    Regressions created from experimental or simulated data enable the construction of metamodels, widely used in a variety of engineering applications. Many engineering problems involve multi-parametric physics whose corresponding ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales