• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Physics Perception in Sloshing Scenes With Guaranteed Thermodynamic Consistency

Article dans une revue avec comité de lecture
Author
MOYA, Beatriz
BADIAS, Alberto
GONZALEZ, David
ccCHINESTA SORIA, Francisco
ccCUETO, Elias

URI
http://hdl.handle.net/10985/24796
DOI
10.1109/TPAMI.2022.3160100
Date
2023
Journal
IEEE Transactions on Pattern Analysis and Machine Intelligence

Abstract

Physics perception very often faces the problem that only limited data or partial measurements on the scene are available. In this work, we propose a strategy to learn the full state of sloshing liquids from measurements of the free surface. Our approach is based on recurrent neural networks (RNN) that project the limited information available to a reduced-order manifold to not only reconstruct the unknown information but also be capable of performing fluid reasoning about future scenarios in real-time. To obtain physically consistent predictions, we train deep neural networks on the reduced-order manifold that, through the employ of inductive biases, ensure the fulfillment of the principles of thermodynamics. RNNs learn from history the required hidden information to correlate the limited information with the latent space where the simulation occurs. Finally, a decoder returns data to the high-dimensional manifold, to provide the user with insightful information in the form of augmented reality. This algorithm is connected to a computer vision system to test the performance of the proposed methodology with real information, resulting in a system capable of understanding and predicting future states of the observed fluid in real-time.

Files in this item

Name:
PIMM-TPAMI-2023-Chinesta.pdf
Size:
16.32Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • A thermodynamics-informed active learning approach to perception and reasoning about fluids 
    Article dans une revue avec comité de lecture
    ccMOYA GARCÍA, Beatriz; ccBADIAS, Alberto; GONZALEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (2023)
    Learning and reasoning about physical phenomena is still a challenge in robotics development, and computational sciences play a capital role in the search for accurate methods able to provide explanations for past events ...
  • Digital twins that learn and correct themselves 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; BADÍAS, Alberto; ALFARO, Icíar; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Wiley, 2022-06)
    Digital twins can be defined as digital representations of physical entities that employ real-time data to enable understanding of the operating conditions of these entities. Here we present a particular type of digital ...
  • Learning slosh dynamics by means of data 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; GONZÁLEZ, David; ccCUETO, Elias; ALFARO, Icíar; ccCHINESTA SORIA, Francisco (Springer Verlag, 2019)
    In this work we study several learning strategies for fluid sloshing problems based on data. In essence, a reduced-order model of the dynamics of the free surface motion of the fluid is developed under rigorous thermodynamics ...
  • Physically sound, self-learning digital twins for sloshing fluids 
    Article dans une revue avec comité de lecture
    MOYA, Beatriz; GONZALEZ, David; ccCUETO, Elias; ALFARO, Icíar; ccCHINESTA SORIA, Francisco (Public Library of Science, 2020)
    In this paper, a novel self-learning digital twin strategy is developed for fluid sloshing phenomena. This class of problems is of utmost importance for robotic manipulation of fluids, for instance, or, in general, in ...
  • MORPH-DSLAM: Model Order Reduction for Physics-Based Deformable SLAM 
    Article dans une revue avec comité de lecture
    ccBADIAS, Alberto; ALFARO, Icíar; GONZALEZ, David; ccCHINESTA SORIA, Francisco; ccCUETO, Elias (Institute of Electrical and Electronics Engineers (IEEE), 2022-11)
    We propose a new methodology to estimate the 3D displacement field of deformable objects from video sequences using standard monocular cameras. We solve in real time the complete (possibly visco-)hyperelasticity problem ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales