On the dynamic performance of additively manufactured visco-elastic meta-materials
Article dans une revue avec comité de lecture
Date
2024-03Journal
Materials LettersAbstract
Additive manufacturing (AM) has revolutionized the production of structures with tailored material properties, including elastomer polyurethanes (EPU) which exhibit exceptional mechanical performance. EPU possesses unique characteristics, such as high elongation at break, efficient energy dissipation, and superior specific strength, making it well-suited for applications requiring resilience to dynamic loadings. By combining the advantages of AM and EPU, enhanced and customized meta-materials can be created, surpassing the mechanical performance of traditional bulk materials. However, because of the non-linear stress–strain response of both the constitutive material and the structure, designing such meta-materials for high strain-rates can be challenging. In this work, therefore, quasi-static and dynamic experiments were conducted to evaluate a meta-material architecture. The investigation revealed a strong positive rate dependency. The mechanical performances, including strength, and dissipated energy, increased with increasing loading rate. The EPU meta-materials demonstrate their suitability for dynamic applications where high energy dissipation is crucial for reducing transmitted loads.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureHAURAT, Margaux; SAUCEAU, Martial; BAILLON, Fabien; LE BARBENCHON, Louise; PEDROS, Matthieu; DUMON, Michel (Wiley, 2022-11-15)A strategy of CO2-assisted extrusion foaming of PMMA-based materials was established to minimize both foam density and porosities dimension. First a highly CO2-philic block copolymer (MAM: PMMA-PBA-PMMA) was added in PMMA ...
-
Article dans une revue avec comité de lectureHENRY, Quentin; VIOT, Philippe; LE BARBENCHON, Louise; COSCULLUELA, Antonio; KOPP, Jean-Benoit (Elsevier BV, 2024-06)The mechanical response of porous aluminas under compressive loading was studied and compared with the fracture mechanisms. Aluminas with a wide range of pore sizes and porosity rates (1–60%) were produced to deconvolve ...
-
Article dans une revue avec comité de lectureResearch on nanocellular foams is motivated in part by the promise of physical properties, in particular mechanical properties, that can go beyond the classical mechanical framework. However, due to the difficulty in ...
-
Article dans une revue avec comité de lectureTo conceive more efficient protective structures, it is possible to draw inspiration from natural structures. However, the origin of the mechanical absorption properties of natural structures is not always clear. Among the ...
-
Article dans une revue avec comité de lectureMaterials and structures featuring a combination of high stiffness, strength, and energy absorption are highly demanded. Current studies are focused on the improvement of these mechanical properties without considering ...