• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
  • Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Elastically anisotropic architected metamaterials with enhanced energy absorption

Article dans une revue avec comité de lecture
Author
JIANG, Huan
487672 University of Louisville
BEDNARCYK, Brett A.
213861 NASA Glenn Research Center
ccLE BARBENCHON, Louise
1002421 Institut de Mécanique et d'Ingénierie [I2M]
CHEN, Yanyu
487672 University of Louisville

URI
http://hdl.handle.net/10985/24981
DOI
10.1016/j.tws.2023.111115
Date
2023-11
Journal
Thin-Walled Structures

Abstract

Materials and structures featuring a combination of high stiffness, strength, and energy absorption are highly demanded. Current studies are focused on the improvement of these mechanical properties without considering their directional dependence. In practice, directional-dependent mechanical properties are crucial to structural integrity and performance, for instance, in the application of anisotropic bone scaffolds for load bearing and battery separators for ion conductivity. Recently, tunable anisotropic stiffness in mechanical metamaterials has been obtained by tailoring the microstructures using data-driven approaches. However, energy absorption behavior, which plays a critical role in the presence of large deformation, has largely been neglected. In this work, we propose a new type of elastically anisotropic architected metamaterials (AAMs) inspired by the current lithium-ion battery separator porous microstructure to acquire tunable anisotropy while exhibiting superior energy absorption. The integrated study presented herein, which combines an experimental investigation with numerical simulations, reveals that the anisotropy can be engineered across a broad range. Compared with two existing lattice and shell-based architected materials, it is shown that the energy absorption of the newly developed AAMs is increased by 120% and 13%. The findings in this work provide a new strategy to expand the existing metamaterial design space, with the potential to enable innovative solutions for applications where directional-dependent stiffness and energy absorption are needed.

Files in this item

Name:
I2M-TWS-LeBarbenchonv2-2024.pdf
Size:
3.959Mb
Format:
PDF
View/Open

Collections

  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)

Related items

Showing items related by title, author, creator and subject.

  • On the dynamic performance of additively manufactured visco-elastic meta-materials 
    Article dans une revue avec comité de lecture
    ccLE BARBENCHON, Louise; ccLISSNER, Maria (Elsevier BV, 2024-03)
    Additive manufacturing (AM) has revolutionized the production of structures with tailored material properties, including elastomer polyurethanes (EPU) which exhibit exceptional mechanical performance. EPU possesses unique ...
  • Influence of the microstructure on the compressive behaviour of porous aluminas: From microstructural characterisation to fracture mechanisms 
    Article dans une revue avec comité de lecture
    ccHENRY, Quentin; ccVIOT, Philippe; ccLE BARBENCHON, Louise; ccCOSCULLUELA, Antonio; ccKOPP, Jean-Benoit (Elsevier BV, 2024-06)
    The mechanical response of porous aluminas under compressive loading was studied and compared with the fracture mechanisms. Aluminas with a wide range of pore sizes and porosity rates (1–60%) were produced to deconvolve ...
  • A review on the mechanical behaviour of microcellular and nanocellular polymeric foams: What is the effect of the cell size reduction? 
    Article dans une revue avec comité de lecture
    ccLE BARBENCHON, Louise; ccKOPP, Jean-Benoit (SAGE Publications, 2024-05-24)
    Research on nanocellular foams is motivated in part by the promise of physical properties, in particular mechanical properties, that can go beyond the classical mechanical framework. However, due to the difficulty in ...
  • Influence of the loading regime on the uniaxial compressive behaviour of density graded Citrus Maxima peel 
    Article dans une revue avec comité de lecture
    ccLE BARBENCHON, Louise (Elsevier BV, 2023-11)
    To conceive more efficient protective structures, it is possible to draw inspiration from natural structures. However, the origin of the mechanical absorption properties of natural structures is not always clear. Among the ...
  • A thick cellular structural adhesive: Identification of its behavior under shear loading 
    Article dans une revue avec comité de lecture
    WETTA, Maxime; ccKOPP, Jean-Benoit; ccLE BARBENCHON, Louise; ccVIOT, Philippe (Elsevier BV, 2023-06)
    This study focuses on the link between the microstructure and the mechanical behavior under shear loading of a thick cellular structural adhesive (TCSA). X-ray microtomography and image post-processing were first used to ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales