• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multiscale Thermodynamics-Informed Neural Networks (MuTINN) for nonlinear structural computations of recycled thermoplastic composites

Article dans une revue avec comité de lecture
Auteur
SEKKAL, S.E.
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
302796 Centre technique des industries mécaniques [Cetim, France] [Cetim]
ccEL FALLAKI IDRISSI, Mohammed
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccMERAGHNI, Fodil
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccCHATZIGEORGIOU, George
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
564849 ESI Group [ESI Group]

URI
http://hdl.handle.net/10985/26243
DOI
10.1016/j.compositesb.2025.112455
Date
2025-04
Journal
Composites Part B: Engineering

Résumé

Fiber-reinforced thermoplastic composites are increasingly valued for their light-weight properties, mechanical performance, and recyclability, yet the recycling process introduces microstructural heterogeneities that degrade their mechanical behavior. To address the challenges from a modeling point of view, this study proposes a Multiscale Thermodynamics-Informed Neural Network (MuTINN) approach to predict the nonlinear, anisotropic response of recycled glass fiber-reinforced polyamide 6 composites, with the primary aim of enabling structural simulations in significantly reduced time compared to traditional FE² approaches. The MuTINN framework integrates thermodynamic principles with artificial neural networks (ANNs) to capture the evolution of internal state variables and Helmholtz free energy, eliminating the need for memory-based networks. Finite element simulations of representative volume elements (RVEs) under diverse loading conditions are utilized to provide off-line data for the MuTINN. The latter accurately predicts stress, strain, and energy quantities, accounting for the anisotropic and heterogeneous nature of recycled materials. While trained using numerical simulations at 0◦ and 90◦ orientation specimens, the proposed framework succesfully predicts the response for specimens with 45◦ orientation with error in the maximum stress level up to 1.6%. The model is implemented into commercial finite element analysis (FEA) software via a Meta-UMAT framework, allowing efficient macroscale simulations. Validation against experimental data and finite element-based periodic homogenization confirms the framework’s accuracy for structural computations.

Fichier(s) constituant cette publication

Nom:
LEM3_JCOMPB_2025_MERAGHNI.pdf
Taille:
9.929Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Multiscale Thermodynamics-Informed Neural Networks (MuTINN) towards fast and frugal inelastic computation of woven composite structures 
    Article dans une revue avec comité de lecture
    EL FALLAKI IDRISSI, M.; PRAUD, Francis; ccMERAGHNI, Fodil; ccCHINESTA SORIA, Francisco; ccCHATZIGEORGIOU, George (Elsevier BV, 2024-05)
    The complex behavior of inelastic woven composites stems primarily from their inherent heterogeneity. Achieving accurate predictions of their linear and nonlinear responses, while considering their microstructures, appears ...
  • Multiparametric modelling of composite materials based on non-intrusive PGD informed by multiscale analyses: Application for real-time stiffness prediction of woven composites 
    Article dans une revue avec comité de lecture
    EL FALLAKI IDRISSI, Mohammed; PRAUD, Francis; CHAMPANEY, Victor; ccCHINESTA SORIA, Francisco; ccMERAGHNI, Fodil (Elsevier, 2022-09)
    In this paper, a multiparametric solution of the stiffness properties of woven composites involving several microstructure parameters is performed. For this purpose, non-intrusive PGD-based methods are employed. From offline ...
  • Advanced Meta-Modeling framework combining Machine Learning and Model Order Reduction towards real-time virtual testing of woven composite laminates in nonlinear regime 
    Article dans une revue avec comité de lecture
    ccEL FALLAKI IDRISSI, Mohammed; PASQUALE, Angelo; ccMERAGHNI, Fodil; PRAUD, Francis; CHINESTA, Francisco (Elsevier BV, 2025-03)
    This paper presents an advanced meta-modeling framework that efficiently combines Machine Learning and Model Order Reduction (MOR) techniques for real-time virtual testing of woven composite materials. The framework is ...
  • PGD non-intrusive pour la simulation multiparamétrique en temps réel du comportement non-linéaire des composites à renforts tissés intégrant les paramètres microstructuraux 
    Communication avec acte
    ccEL FALLAKI IDRISSI, Mohammed; PRAUD, Francis; ccCHINESTA SORIA, Francisco; ccMERAGHNI, Foudil (Association pour les MAtériaux Composites (AMAC), 2023-07)
    La modélisation multi-échelle non-linéaire par éléments finis des composites reste aujourd’hui un défi dans des applications industrielles. En effet, son utilisation nécessite une puissance de calcul élevée et donc souvent ...
  • Three-dimensional FE2 method for the simulation of non-linear, rate-dependent response of composite structures 
    Article dans une revue avec comité de lecture
    TIKARROUCHINE, El-Hadi; CHATZIGEORGIOU, George; PRAUD, Francis; PIOTROWSKI, Boris; CHEMISKY, Yves; ccMERAGHNI, Fodil (Elsevier, 2018)
    In this paper, a two scale Finite Element method (FE2 ), is presented to predict the non-linear macroscopic response of 3D composite structures with periodic microstructure that exhibit a time-dependent response. The ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales