• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

An upper bound for validity limits of asymptotic analytical approaches based on normal form theory

Article dans une revue avec comité de lecture
Auteur
LAMARQUE, Claude-Henri
ccTOUZÉ, Cyril
135261 Unité de Mécanique [UME]
ccTHOMAS, Olivier
12568 Laboratoire de Mécanique des Structures et des Systèmes Couplés [LMSSC]
178374 Laboratoire des Sciences de l'Information et des Systèmes : Ingénierie Numérique des Systèmes Mécaniques [LSIS- INSM]

URI
http://hdl.handle.net/10985/7473
DOI
10.1007/s11071-012-0584-y
Date
2012
Journal
Nonlinear Dynamics

Résumé

Perturbation methods are routinely used in all fields of applied mathematics where analytical solutions for nonlinear dynamical systems are searched. Among them, normal form theory provides a reliable method for systematically simplifying dynamical systems via nonlinear change of coordinates, and is also used in a mechanical context to define Nonlinear Normal Modes (NNMs). The main recognized drawback of perturbation methods is the absence of a criterion establishing their range of validity in terms of amplitude. In this paper, we propose a method to obtain upper bounds for amplitudes of changes of variables in normal form transformations. The criterion is tested on simple mechanical systems with one and two degrees-of-freedom, and for complex as well as real normal form. Its behavior with increasing order in the normal transform is established, and comparisons are drawn between exact solutions and normal form computations for increasing levels of amplitudes. The results clearly establish that the criterion gives an upper bound for validity limit of normal transforms.

Fichier(s) constituant cette publication

Nom:
LSIS-INSM_nonli dyn_2012_thomas.pdf
Taille:
2.899Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Identification of mode couplings in nonlinear vibrations of the steelpan 
    Article dans une revue avec comité de lecture
    MONTEIL, Mélodie; ccTHOMAS, Olivier; ccTOUZÉ, Cyril (Elsevier, 2015)
    The vibrations and sounds produced by two notes of a double second steelpan are investigated, the main objective being to quantify the nonlinear energy exchanges occurring between vibration modes that are responsible of ...
  • Conservative Numerical Methods for the Full von Kármán Plate Equations 
    Article dans une revue avec comité de lecture
    BILBAO, Stefan; ccTHOMAS, Olivier; ccTOUZÉ, Cyril; DUCCESCHI, Michele (Wiley, 2015)
    This article is concerned with the numerical solution of the full dynamical von Kármán plate equations for geometrically nonlinear (large-amplitude) vibration in the simple case of a rectangular plate under periodic boundary ...
  • Nonlinear vibrations of steelpans: analysis of mode coupling in view of modal sound synthesis. 
    Communication avec acte
    MONTEIL, Mélodie; ccTOUZÉ, Cyril; ccTHOMAS, Olivier (2013)
    Steelpans are musical percussions made from steel barrels. During the manufacturing, the metal is stretched and bended, to produce a set of thin shells that are the differents notes of the instrument. In normal playing, ...
  • Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances 
    Article dans une revue avec comité de lecture
    MONTEIL, Mélodie; ccTOUZÉ, Cyril; ccTHOMAS, Olivier; ccBENACCHIO, Simon (Springer Verlag, 2014)
    This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second order internal resonances resulting from a harmonic tuning of their natural ...
  • Nonlinear dynamics of coupled oscillators in 1:2 internal resonance: effects of the non-resonant quadratic terms and recovery of the saturation effect 
    Article dans une revue avec comité de lecture
    SHAMI, Zein Alabidin; ccSHEN, Yichang; ccTOUZÉ, Cyril; ccTHOMAS, Olivier; ccGIRAUD-AUDINE, Christophe (Springer Science and Business Media LLC, 2022-08)
    This article considers the nonlinear dynamics of coupled oscillators featuring strong coupling in 1:2 internal resonance. In forced oscillations, this particular interaction is the source of energy exchange, leading to a ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales