An upper bound for validity limits of asymptotic analytical approaches based on normal form theory
Article dans une revue avec comité de lecture
Date
2012Journal
Nonlinear DynamicsRésumé
Perturbation methods are routinely used in all fields of applied mathematics where analytical solutions for nonlinear dynamical systems are searched. Among them, normal form theory provides a reliable method for systematically simplifying dynamical systems via nonlinear change of coordinates, and is also used in a mechanical context to define Nonlinear Normal Modes (NNMs). The main recognized drawback of perturbation methods is the absence of a criterion establishing their range of validity in terms of amplitude. In this paper, we propose a method to obtain upper bounds for amplitudes of changes of variables in normal form transformations. The criterion is tested on simple mechanical systems with one and two degrees-of-freedom, and for complex as well as real normal form. Its behavior with increasing order in the normal transform is established, and comparisons are drawn between exact solutions and normal form computations for increasing levels of amplitudes. The results clearly establish that the criterion gives an upper bound for validity limit of normal transforms.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureGIVOIS, Arthur; TAN, Jin-Jack; TOUZÉ, Cyril; THOMAS, Olivier (Springer Science and Business Media LLC, 2020-02)A system composed of two cubic nonlinear oscillators with close natural frequencies, and thus displaying a 1:1 internal resonance, is studied both theoretically and experimentally, with a special emphasis on the free ...
-
Article dans une revue avec comité de lectureSHEN, Yichang; VIZZACCARO, Alessandra; KESMIA, Nassim; SALLES, Loïc; THOMAS, Olivier; TOUZÉ, Cyril (MDPI AG, 2021-03)The aim of this contribution is to present numerical comparisons of model-order reduction methods for geometrically nonlinear structures in the general framework of finite element (FE) procedures. Three different methods ...
-
Article dans une revue avec comité de lectureThis paper aims at reviewing nonlinear methods for model order reduction in structures with geometric nonlinearity, with a special emphasis on the techniques based on invariant manifold theory. Nonlinear methods differ ...
-
Article dans une revue avec comité de lectureVIZZACCARO, Alessandra; GIVOIS, Arthur; LONGOBARDI, Pierluigi; SHEN, Yichang; DEÜ, Jean-François; SALLES, Loïc; TOUZÉ, Cyril; THOMAS, Olivier (Springer Verlag, 2020)Non-intrusive methods have been used since two decades to derive reduced-order models for geometrically nonlinear structures, with a particular emphasis on the so-called STiffness Evaluation Procedure (STEP), relying on ...
-
Article dans une revue avec comité de lectureMARTIN, Adrien; OPRENI, Andrea; VIZZACCARO, Alessandra; DEBEURRE, Marielle; SALLES, Loic; FRANGI, Attilio; THOMAS, Olivier; TOUZÉ, Cyril (Centre pour la Communication Scientifique Directe (CCSD), 2023-06)The direct parametrisation method for invariant manifolds is a nonlinear reduction technique which derives nonlinear mappings and reduced-order dynamics that describe the evolution of dynamical systems along a low-dimensional ...