On Material Removal Regimes for the Shaping of Glass Edges: Force Analysis, Surface Topography and Damage Mechanisms
Article dans une revue avec comité de lecture
Date
2008Journal
Tribology LettersAbstract
Glass shaping, which corresponds to the removal of the edges of a specimen, is the last finishing operation in glass manufacturing. This process has several functions on the final shaped glass including removing sharp edges, improving mechanical resistance, decreasing surface damage and giving it an aesthetical aspect. This article addresses the effects of working parameters, including grinding forces and consumed power, on surface edge finishing and damage mechanism induced during glass grinding. Microscopic observations and multi-scale analysis have also been conducted to investigate the surface edge characteristics. Experimental results show three damage regimes. The first (regime I) is a partial ductile regime with cutting action accompanied by chip formation. The second (regime II) is a crushing (or fragmentation) regime. The last (regime III) is also a partial ductile regime but by ploughing action with displaced material. The shaped surface obtained in the regime II has a better roughness than that obtained in regime I and III. However, regimes I and III include streaks and form defects which are not present in regime II. Similar to metallic materials, the evolution of force components show a linear relationship between normal and tangential forces. This implicates a constant average contact pressure and friction coefficient (l) between the flat grains and the workpiece.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureDEMIRCI, Ibrahim; MEZGHANI, Sabeur; YOUSFI, Mohammed; EL MANSORI, Mohamed (American Society of Mechanical Engineers, 2014-01)Determining friction is as equally essential as determining the film thickness in the lubricated contact, and is an important research subject. Indeed, reduction of friction in the automotive industry is important for ...
-
Article dans une revue avec comité de lectureCylinder liner surface has a great influence on frictional and wear performances of combustion engines during the running-in period. Two surface texture anisotropies produced by plateau honing (PH) and helical slide honing ...
-
Article dans une revue avec comité de lectureThe texture change during running-in alters the performance and efficiency of a tribo-mechanical system. During mass production of cylinder liners, a final finishing stage known as ‘‘plateau honing’’ is commonly added to ...
-
Article dans une revue avec comité de lectureThe cylinder bore surface texture, widely produced by the honing technique, is an essential factor for a good engine performance (friction, oil consumption, running-in, wear etc.). This explains the improvement and development ...
-
Article dans une revue avec comité de lectureMEZGHANI, Sabeur; YOUSFI, Mohammed; ZAHOUANI, Hassan; EL MANSORI, Mohamed; DEMIRCI, Ibrahim (Taylor & Francis, 2012)Multistage abrasive finishing processes (grinding, polishing, honing, etc.) are commonly used to produce the geometrical properties of a surface to meet its technical functionalities in the operating characteristics of ...