Computation of quasi-periodic localised vibrations in nonlinear cyclic and symmetric structures using harmonic balance methods
Article dans une revue avec comité de lecture
Author
Date
2019Journal
Journal of Sound and VibrationAbstract
In this paper we develop a fully numerical approach to compute quasi-periodic vibrations bifurcating from nonlinear periodic states in cyclic and symmetric structures. The focus is on localised oscillations arising from modulationally unstable travelling waves induced by strong external excitations. The computational strategy is based on the periodic and quasi-periodic harmonic balance methods together with an arc-length continuation scheme. Due to the presence of multiple localised states, a new method to switch from periodic to quasi-periodic states is proposed. The algorithm is applied to two different minimal models for bladed disks vibrating in large amplitudes regimes. In the first case, each sector of the bladed disk is modelled by a single degree of freedom, while in the second application a second degree of freedom is included to account for the disk inertia. In both cases the algorithm has identified and tracked multiple quasi-periodic localised states travelling around the structure in the form of dissipative solitons
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureHOFFMANN, N.; FONTANELA, Francesco; GROLET, Aurélien; SALLES, Loïc; CHABCHOUB, Amin; CHAMPNEYS, Alan; PATSIAS, Sophoclis; HOFFMANN, Norbert (Elsevier, 2019)The emergence of localised vibrations in cyclic and symmetric rotating struc-tures, such as bladed disks of aircraft engines, has challenged engineers in thepast few decades. In the linear regime, localised states ...
-
Article dans une revue avec comité de lectureSHEN, Yichang; VIZZACCARO, Alessandra; KESMIA, Nassim; SALLES, Loïc; THOMAS, Olivier; TOUZÉ, Cyril (MDPI AG, 2021-03)The aim of this contribution is to present numerical comparisons of model-order reduction methods for geometrically nonlinear structures in the general framework of finite element (FE) procedures. Three different methods ...
-
Article dans une revue avec comité de lectureVIZZACCARO, Alessandra; GIVOIS, Arthur; LONGOBARDI, Pierluigi; SHEN, Yichang; DEÜ, Jean-François; SALLES, Loïc; TOUZÉ, Cyril; THOMAS, Olivier (Springer Verlag, 2020)Non-intrusive methods have been used since two decades to derive reduced-order models for geometrically nonlinear structures, with a particular emphasis on the so-called STiffness Evaluation Procedure (STEP), relying on ...
-
Article dans une revue avec comité de lectureMARTIN, Adrien; OPRENI, Andrea; VIZZACCARO, Alessandra; DEBEURRE, Marielle; SALLES, Loic; FRANGI, Attilio; THOMAS, Olivier; TOUZÉ, Cyril (Centre pour la Communication Scientifique Directe (CCSD), 2023-06)The direct parametrisation method for invariant manifolds is a nonlinear reduction technique which derives nonlinear mappings and reduced-order dynamics that describe the evolution of dynamical systems along a low-dimensional ...
-
Comparison of ANM and Predictor-Corrector Method to Continue Solutions of Harmonic Balance Equations Article dans une revue avec comité de lectureWOIWODE, Lukas; BALAJI, Nidish Narayanaa; KAPPAUF, Jonas; TUBITA, Fabia; GUILLOT, Louis; VERGEZ, Christophe; COCHELIN, Bruno; GROLET, Aurélien; KRACK, Malte (Springer International Publishing, 2019)In this work we apply and compare two numerical path continuation algorithms for solving algebraic equations arising when applying the Harmonic Balance Method to compute periodic regimes of nonlinear dynamical systems. The ...