• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of Reduction Methods for Finite Element Geometrically Nonlinear Beam Structures

Article dans une revue avec comité de lecture
Author
ccSHEN, Yichang
421305 Institut des Sciences de la mécanique et Applications industrielles [IMSIA - UMR 9219]
VIZZACCARO, Alessandra
69530 Imperial College London
235079 Department of Mechanical Engineering [Imperial College London]
KESMIA, Nassim
421305 Institut des Sciences de la mécanique et Applications industrielles [IMSIA - UMR 9219]
SALLES, Loïc
235079 Department of Mechanical Engineering [Imperial College London]
69530 Imperial College London
THOMAS, Olivier
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccTOUZÉ, Cyril
421305 Institut des Sciences de la mécanique et Applications industrielles [IMSIA - UMR 9219]

URI
http://hdl.handle.net/10985/22695
DOI
10.3390/vibration4010014
Date
2021-03
Journal
Vibration

Abstract

The aim of this contribution is to present numerical comparisons of model-order reduction methods for geometrically nonlinear structures in the general framework of finite element (FE) procedures. Three different methods are compared: the implicit condensation and expansion (ICE), the quadratic manifold computed from modal derivatives (MD), and the direct normal form (DNF) procedure, the latter expressing the reduced dynamics in an invariant-based span of the phase space. The methods are first presented in order to underline their common points and differences, highlighting in particular that ICE and MD use reduction subspaces that are not invariant. A simple analytical example is then used in order to analyze how the different treatments of quadratic nonlinearities by the three methods can affect the predictions. Finally, three beam examples are used to emphasize the ability of the methods to handle curvature (on a curved beam), 1:1 internal resonance (on a clamped-clamped beam with two polarizations), and inertia nonlinearity (on a cantilever beam).

Files in this item

Name:
LISPEN_MDPI_2021_THOMAS
Size:
4.579Mb
Format:
PDF
View/Open
CC BY
This document is available under CC BY license

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Non-intrusive reduced order modelling for the dynamics of geometrically nonlinear flat structures using three-dimensional finite elements 
    Article dans une revue avec comité de lecture
    VIZZACCARO, Alessandra; GIVOIS, Arthur; LONGOBARDI, Pierluigi; ccSHEN, Yichang; DEÜ, Jean-François; SALLES, Loïc; ccTOUZÉ, Cyril; THOMAS, Olivier (Springer Verlag, 2020)
    Non-intrusive methods have been used since two decades to derive reduced-order models for geometrically nonlinear structures, with a particular emphasis on the so-called STiffness Evaluation Procedure (STEP), relying on ...
  • Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques 
    Article dans une revue avec comité de lecture
    ccTOUZÉ, Cyril; VIZZACCARO, Alessandra; THOMAS, Olivier (Springer, 2021-07)
    This paper aims at reviewing nonlinear methods for model order reduction in structures with geometric nonlinearity, with a special emphasis on the techniques based on invariant manifold theory. Nonlinear methods differ ...
  • Nonlinear dynamics of coupled oscillators in 1:2 internal resonance: effects of the non-resonant quadratic terms and recovery of the saturation effect 
    Article dans une revue avec comité de lecture
    SHAMI, Zein Alabidin; ccSHEN, Yichang; GIRAUD-AUDINE, Christophe; ccTOUZÉ, Cyril; THOMAS, Olivier (Springer Science and Business Media LLC, 2022-08)
    This article considers the nonlinear dynamics of coupled oscillators featuring strong coupling in 1:2 internal resonance. In forced oscillations, this particular interaction is the source of energy exchange, leading to a ...
  • Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances 
    Article dans une revue avec comité de lecture
    MONTEIL, Mélodie; ccTOUZÉ, Cyril; THOMAS, Olivier; BENACCHIO, Simon (Springer Verlag, 2014)
    This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second order internal resonances resulting from a harmonic tuning of their natural ...
  • Backbone curves of coupled cubic oscillators in one-to-one internal resonance: bifurcation scenario, measurements and parameter identification 
    Article dans une revue avec comité de lecture
    GIVOIS, Arthur; TAN, Jin-Jack; ccTOUZÉ, Cyril; THOMAS, Olivier (Springer Science and Business Media LLC, 2020-02)
    A system composed of two cubic nonlinear oscillators with close natural frequencies, and thus displaying a 1:1 internal resonance, is studied both theoretically and experimentally, with a special emphasis on the free ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales