Harmonic-Modal Hybrid Reduced Order Model for the Efficient Integration of Non-Linear Soil Dynamics
Article dans une revue avec comité de lecture
Résumé
Nonlinear behavior of soils during a seismic event has a predominant role in current site response analysis. Soil response analysis, and more concretely laboratory data, indicate that the stress-strain relationship of soils is nonlinear and exhibits hysteresis. An equivalent linearization method, in which non-linear characteristics of shear modulus and damping factor of soils are modeled as equivalent linear relations of the shear strain is usually applied, but this assumption, however, may lead to a conservative approach of the seismic design. In this paper, we propose an alternative analysis formulation, able to address forced response simulation of soils exhibiting their characteristic nonlinear behavior. The proposed approach combines ingredients of modal and harmonic analyses enabling efficient time-integration of nonlinear soil behaviors based on the offline construction of a dynamic response parametric solution by using Proper Generalized Decomposition (PGD)-based model order reduction technique.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureMesh-based solution of 3D models defined in plate or shell domains remains a challenging issue nowadays due to the fact that the needed meshes generally involve too many degrees of freedom. When the considered problem ...
-
Article dans une revue avec comité de lecturePipeline structural analysis is a well-developed topic in engineering and research practice. Since water, oil or gas pipeline systems are a key part of modern development, therefore, it is important to ensure an appropriate ...
-
Article dans une revue avec comité de lectureDI LORENZO, Daniele; CHAMPANEY, Victor; GERMOSO, Claudia; CUETO, Elias; CHINESTA SORIA, Francisco (MDPI AG, 2022-07)Many models assumed to be able to predict the response of structural systems fail to efficiently accomplish that purpose because of two main reasons. First, some structures in operation undergo localized damage that degrades ...
-
Article dans une revue avec comité de lectureDI LORENZO, Daniele; RODRIGUEZ, Sebastian; CHAMPANEY, Laurent; GERMOSO, Claudia; BERINGHIER, Marianne; CHINESTA SORIA, Francisco (Elsevier BV, 2024-06)Structural Health Monitoring (SHM) techniques are key to monitor the health state of engineering structures, where damage type, location and severity are to be estimated by applying sophisticated techniques to signals ...
-
Article dans une revue avec comité de lectureVERMIGLIO, Simona; CHAMPANEY, Victor; SANCARLOS, Abel; DAIM, Fatima; KEDZIA, Jean Claude; DUVAL, Jean Louis; DIEZ, Pedro; CHINESTA SORIA, Francisco (MDPI, 2020)Efficient and optimal design of radar-based Advanced Driver Assistant Systems (ADAS) needs the evaluation of many different electromagnetic solutions for evaluating the impact of the radome on the electromagnetic wave ...