Multiscale Thermodynamics-Informed Neural Networks (MuTINN) towards fast and frugal inelastic computation of woven composite structures
Article dans une revue avec comité de lecture
Date
2024-05Journal
Journal of the Mechanics and Physics of SolidsRésumé
The complex behavior of inelastic woven composites stems primarily from their inherent heterogeneity. Achieving accurate predictions of their linear and nonlinear responses, while considering their microstructures, appears feasible through the application of multi-scale modeling approaches. However, effectively incorporating these methodologies into real-scale applications, particularly within FE 2 analyses, remains challenging due to the significant computational requirements they entail. To overcome this issue, while considering the scale effects, this study introduces an alternative approach based on Artificial Neural Networks (ANNs) to perform a macroscopic surrogate model of composites. This model, referred to as Multiscale Thermodynamics Informed Neural Networks (MuTINN), is founded on thermodynamic principles and introduces specific quantities of interest that serve as internal state variables at the macroscopic level. This captures efficiently the state and evolution laws governing the history-dependent behavior of these composites while retaining the thermodynamic admissibility and the physical interpretability of their overall responses. Moreover, to facilitate its numerical implementation within a FE code, a Meta-UMat has been developed, streamlining the application of multiscale FE-MuTINN approach for composite structure computations. The prediction capabilities of the proposed approach is demonstrated across the material scales, exemplified through diverse instances of woven composite structures. Theses applications account for anisotropic yarn damage and an elastoplastic polymer matrix behavior. The numerical results and the related comparison with experimental findings and FE computations demonstrate remarkable consistency across a wide range of non-proportional loading paths. This promises a potential solution to alleviate the computational challenges associated with multiscale simulations of large composite structures.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureEL FALLAKI IDRISSI, Mohammed; PRAUD, Francis; CHAMPANEY, Victor; CHINESTA SORIA, Francisco; MERAGHNI, Fodil (Elsevier, 2022-09)In this paper, a multiparametric solution of the stiffness properties of woven composites involving several microstructure parameters is performed. For this purpose, non-intrusive PGD-based methods are employed. From offline ...
-
Communication avec acteEL FALLAKI IDRISSI, Mohammed; PRAUD, Francis; CHINESTA SORIA, Francisco; MERAGHNI, Foudil (Association pour les MAtériaux Composites (AMAC), 2023-07)La modélisation multi-échelle non-linéaire par éléments finis des composites reste aujourd’hui un défi dans des applications industrielles. En effet, son utilisation nécessite une puissance de calcul élevée et donc souvent ...
-
Article dans une revue avec comité de lectureTIKARROUCHINE, El-Hadi; CHATZIGEORGIOU, George; PRAUD, Francis; PIOTROWSKI, Boris; CHEMISKY, Yves; MERAGHNI, Fodil (Elsevier, 2018)In this paper, a two scale Finite Element method (FE2 ), is presented to predict the non-linear macroscopic response of 3D composite structures with periodic microstructure that exhibit a time-dependent response. The ...
-
Conférence invitéeTIKARROUCHINE, El-Hadi; PRAUD, Francis; CHATZIGEORGIOU, George; PIOTROWSKI, Boris; CHEMISKY, Yves; MERAGHNI, Fodil (2017)Dans ce papier, une technique de modélisation multi-échelle (EF2) basée sur le principe d’homogénéisation périodique a été développée pour décrire le comportement des structures composites 3D avec un comportement ...
-
Article dans une revue avec comité de lectureIn this work, a multi-scale model established from the concept of periodic homogenization is utilized to predict the cyclic and time-dependent response of thermoplastic-based woven composites. The macroscopic behaviour of ...