Grain size impact on sheet metal behavior via CPFEM
Article dans une revue avec comité de lecture
Date
2025-12Journal
International Journal of Mechanical SciencesAbstract
A novel multiscale computational framework based on Crystal Plasticity Finite Element (CPFE) modeling is proposed to investigate the effect of grain size on the mechanical behavior and ductility limits of thin metal sheets, featuring both uniform and gradient grain structures. This approach relies on designing unitcell models that reflect the microstructural characteristics of thin metal sheets. The overall response of the unit cell is obtained from that of its single crystal constituents using the periodic homogenization scheme. At the single crystal level, the mechanical behavior is modeled within a finite strain, rate-independent plasticity framework, where the plastic flow is governed by the classical Schmid law. The effect of individual grain size is incorporated at the single crystal scale by adjusting the critical resolved shear stress (CRSS) evolution, using a combination of the microscopic Hall–Petch relationship and a dislocation density-based hardening model. To efficiently solve the single crystal constitutive equations, a return-mapping algorithm coupled with the Fischer–Burmeister complementarity function is developed and implemented into ABAQUS/Standard through a user-defined material subroutine (UMAT). At the macroscopic level, the ductility limits are predicted by the Rice bifurcation theory. The performance of the proposed strategy is validated through a series of polycrystalline aggregate simulations. The numerical results demonstrate a significant influence of grain size on both the macroscopic strength and ductility limits of polycrystalline aggregates. Additionally, the introduction of gradient grain structures is shown to substantially enhance both strength and ductility. These findings provide valuable insights for optimizing material performance in engineering applications.
Files in this item
- Name:
- LEM3_IJMS_2025_BENBETTAIEB.pdf
- Size:
- 4.593Mb
- Format:
- Embargoed until:
- 2026-06-01
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureAn advanced Crystal Plasticity Finite Element (CPFE) approach is developed to accurately predict the ductility limit strains of thin metal sheets. This method uses polycrystalline unit cells to represent the metal sheets ...
-
Article dans une revue avec comité de lectureThe current contribution investigates the effect of some relevant microstructural parameters (specifically, morphological and crystallographic textures) on the ductility limits of polycrystalline aggregates using the Crystal ...
-
Ductility limit prediction for polycrystalline aggregates using a CPFEM-based multiscale framework Article dans une revue avec comité de lectureThe ductility of polycrystalline aggregates is usually limited by two main phenomena: plastic strain localization and void coalescence. The goal of this contribution is to develop a new multiscale framework, based on the ...
-
Communication sans acteAccurate predictions of ductility limits play a crucial role in product design and manufacturing, offering substantial cost reductions in development. In this investigation, attention is focused on the prediction of ductility ...
-
Article dans une revue avec comité de lectureA new crystal plasticity finite element (CPFE) approach is developed to predict the mechanical behavior and ductility limits of thin metal sheets. Within this approach, a representative volume element (RVE) is chosen to ...

