• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
  • Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rapid Biofabrication of an Advanced Microphysiological System Mimicking Phenotypical Heterogeneity and Drug Resistance in Glioblastoma

Article dans une revue avec comité de lecture
Author
ccPUN, Sirjana
ccPRAKASH, Anusha
107363 University of Cincinnati [UC]
DEMAREE, Dalee
107363 University of Cincinnati [UC]
KRUMMEL, Daniel Pomeranz
ccSCIUME, Giuseppe
1002421 Institut de Mécanique et d'Ingénierie [I2M]
SENGUPTA, Soma
44261 University of North Carolina [Chapel Hill] [UNC]
BARRILE, Riccardo

URI
http://hdl.handle.net/10985/25648
DOI
10.1002/adhm.202401876
Date
2024-08-05
Journal
Advanced Healthcare Materials

Abstract

AbstractMicrophysiological systems (MPSs) reconstitute tissue interfaces and organ functions, presenting a promising alternative to animal models in drug development. However, traditional materials like polydimethylsiloxane (PDMS) often interfere by absorbing hydrophobic molecules, affecting drug testing accuracy. Additive manufacturing, including 3D bioprinting, offers viable solutions. GlioFlow3D, a novel microfluidic platform combining extrusion bioprinting and stereolithography (SLA) is introduced. GlioFlow3D integrates primary human cells and glioblastoma (GBM) lines in hydrogel‐based microchannels mimicking vasculature, within an SLA resin framework using cost‐effective materials. The study introduces a robust protocol to mitigate SLA resin cytotoxicity. Compared to PDMS, GlioFlow3D demonstrated lower small molecule absorption, which is relevant for accurate testing of small molecules like Temozolomide (TMZ). Computational modeling is used to optimize a pumpless setup simulating interstitial fluid flow dynamics in tissues. Co‐culturing GBM with brain endothelial cells in GlioFlow3D showed enhanced CD133 expression and TMZ resistance near vascular interfaces, highlighting spatial drug resistance mechanisms. This PDMS‐free platform promises advanced drug testing, improving preclinical research and personalized therapy by elucidating complex GBM drug resistance mechanisms influenced by the tissue microenvironment.

Files in this item

Name:
I2M-AHM-Sciume-2024.pdf
Size:
5.415Mb
Format:
PDF
View/Open
CC BY-NC
This document is available under CC BY-NC license

Collections

  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)

Related items

Showing items related by title, author, creator and subject.

  • Thermo-hygro-chemical model of concrete: from curing to high temperature behavior 
    Article dans une revue avec comité de lecture
    ccSCIUMÈ, Giuseppe; MOREIRA, Murilo Henrique; ccDAL PONT, Stefano (Springer Science and Business Media LLC, 2024-09-18)
    Concrete is a heterogeneous multiphase material composed of various solid phases that interact both physically and chemically with each other and with the water filling the pores. Among these solid phases, a crucial role ...
  • Cortex tissue relaxation and slow to medium load rates dependency can be captured by a two-phase flow poroelastic model 
    Article dans une revue avec comité de lecture
    URCUN, Stéphane; ROHAN, Pierre-Yves; SCIUMÈ, Giuseppe; BORDAS, Stéphane P.A. (Elsevier BV, 2021)
    This paper investigates the complex time-dependent behavior of cortex tissue, under adiabatic condition, using a two-phase flow poroelastic model. Motivated by experiments and Biot’s consolidation theory, we tackle ...
  • Non-operable glioblastoma: Proposition of patient-specific forecasting by image-informed poromechanical model 
    Article dans une revue avec comité de lecture
    ccURCUN, Stéphane; ccBAROLI, Davide; ccROHAN, Pierre-Yves; ccSKALLI, Wafa; ccLUBRANO, Vincent; BORDAS, Stéphane Pierre Alain; ccSCIUME, Giuseppe (Elsevier BV, 2023-03)
    We propose a novel image-informed glioblastoma mathematical model within a reactive multiphase poromechanical framework. Poromechanics offers to model in a coupled manner the interplay between tissue deformation and ...
  • Oncology and mechanics: Landmark studies and promising clinical applications 
    Article dans une revue avec comité de lecture
    ccURCUN, Stéphane; LORENZO, Guillermo; ccBAROLI, Davide; ccROHAN, Pierre-Yves; ccSCIUME, Giuseppe; ccSKALLI, Wafa; ccLUBRANO, Vincent; BORDAS, Stéphane Pierre Alain (Elsevier, 2022-06)
    Clinical management of cancer has continuously evolved for several decades. Biochemical, molecular, and genomics approaches have brought and still bring numerous insights into cancerous diseases. It is now accepted that ...
  • In vivo mechanical response of thigh soft tissues under compression: a two-layer model allows an improved representation of the local tissue kinematics 
    Article dans une revue avec comité de lecture
    ccSEGAIN, Alexandre; ccSCIUME, Giuseppe; ccPILLET, Helene; ccROHAN, Pierre-Yves (Elsevier BV, 2024-05)
    Biomechanical parameters have the potential to be used as physical markers for prevention and diagnosis. Finite Element Analysis (FEA) is a widely used tool to evaluate these parameters in vivo. However, the development ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales