• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

A crystal plasticity-damage coupled finite element framework for predicting mechanical behavior and ductility limits of thin metal sheets

Article dans une revue avec comité de lecture
Auteur
ZHOU, S.
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccBEN BETTAIEB, Mohamed
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccABED-MERAIM, Farid
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/26062
DOI
10.1016/j.ijplas.2025.104267
Date
2025-04
Journal
International Journal of Plasticity

Résumé

A new crystal plasticity finite element (CPFE) approach is developed to predict the mechanical behavior and ductility limits of thin metal sheets. Within this approach, a representative volume element (RVE) is chosen to accurately capture the mechanical characteristics of these metal sheets. This approach uses the periodic homogenization multiscale scheme to ensure the transition between the RVE and single crystal scales. At the single crystal scale, the mechanical behavior is modeled as elastoplastic within the finite strain framework. The plastic flow is governed by a modified version of the Schmid law, which incorporates the effects of damage on the evolution of microscopic mechanical variables. The damage behavior is modeled using the framework of Continuum Damage Mechanics (CDM), introducing a scalar microscopic damage variable at the level of each crystallographic slip system (CSS). The evolution law of this damage variable is derived from thermodynamic forces, resulting in deviations from the normality rule in microscopic plastic flow. This coupling of damage and elastoplastic behavior leads to a highly nonlinear set of constitutive equations. To solve these equations, an efficient return-mapping algorithm is developed and implemented in the ABAQUS/Standard finite element software via a user-defined material subroutine (UMAT). At the macroscopic scale, the onset of localized necking is predicted by the Rice bifurcation theory. The proposed damage-coupled single crystal model and its integration scheme are validated through several numerical simulations. The analysis extensively explores the impact of microstructural and damage parameters on the mechanical behavior and ductility limits of both single crystals and polycrystalline aggregates. The numerical results indicate that both of the mechanical behavior and ductility limits are significantly influenced by the microscopic damage and deviations from normal plastic flow rule.

Fichier(s) constituant cette publication

Nom:
LEM3_IJP_2025_BEN BETTAIEB.pdf
Taille:
5.411Mo
Format:
PDF
Fin d'embargo:
2025-11-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Ductility limit prediction for polycrystalline aggregates using a CPFEM-based multiscale framework 
    Article dans une revue avec comité de lecture
    ZHU, Jianchang; ccBEN BETTAIEB, Mohamed; ZHOU, Shuai; ccABED-MERAIM, Farid  (Elsevier BV, 2023-08)
    The ductility of polycrystalline aggregates is usually limited by two main phenomena: plastic strain localization and void coalescence. The goal of this contribution is to develop a new multiscale framework, based on the ...
  • A physically-based mixed hardening model for the prediction of the ductility limits of thin metal sheets using a CPFE approach 
    Article dans une revue avec comité de lecture
    ZHOU, Shuai; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid  (Elsevier BV, 2024-03-21)
    An advanced Crystal Plasticity Finite Element (CPFE) approach is developed to accurately predict the ductility limit strains of thin metal sheets. This method uses polycrystalline unit cells to represent the metal sheets ...
  • Investigation of the effect of morphological and crystallographic textures on the ductility limits of thin metal sheets using a CPFEM-based approach 
    Article dans une revue avec comité de lecture
    ZHOU, Shuai; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid  (Elsevier BV, 2024-07)
    The current contribution investigates the effect of some relevant microstructural parameters (specifically, morphological and crystallographic textures) on the ductility limits of polycrystalline aggregates using the Crystal ...
  • Prediction of the Ductility Limit of Magnesium AZ31B Alloy 
    Chapitre d'ouvrage scientifique
    JEDIDI, Mohamed Yassine; ccBEN BETTAIEB, Mohamed; BOUGUECHA, Anas; ccABED-MERAIM, Farid ; KHABOU, Mohamed Taoufik; HADDAR, Mohamed (Springer International Publishing, 2019)
    In many engineering applications (automotive, computer and mobile device industries, etc.), magnesium alloys have been widely used owing to their interesting physical and mechanical parameters. However, magnesium alloys ...
  • An anisotropic model with linear perturbation technique to predict HCP sheet metal ductility limit 
    Communication avec acte
    JEDIDI, Mohamed Yassine; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid ; KHABOU, Mohamed Taoufik; BOUGUECHA, Anas; HADDAR, Mohamed (2021)
    In this paper, hexagonal closed packed (HCP) sheet metal ductility for a viscoplastic material is analyzed by using a linear perturbation technique. It can be used for the analysis of localized necking. This technique is ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales