• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A data-driven topology optimization approach to handle geometrical manufacturing constraints in the earlier steps of the design phase

Communication avec acte
Author
ccALMASRI, Waad
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccDANGLADE, Florence
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccBETTEBGHOR, Dimitri
ccADJED, Faouzi
363822 IRT SystemX
ccABABSA, Fakhreddine
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]

URI
http://hdl.handle.net/10985/26761
DOI
10.1016/j.procir.2023.02.143
Date
2023-05-17

Abstract

This paper improves on the performance of the Deep Learning Additive Manufacturing driven Topology Optimization (DL-AM-TO) approach that was proposed in [4]. DL-AM-TO is a data-driven generative method that integrates the mechanical and geometrical constraints concurrently at the same conceptual level and generates a 2D design accordingly. Furthermore, DL-AM-TO tailors the design's geometry to comply with manufacturing criteria, which facilitates the designer's interpretation phase and prevents him/her from getting stuck in a loop of drawing the CAD and testing its performance. The geometry needs less support structure and hence is printed faster. Consequently, DL-AM-TO accelerates the Design for AM process.

Files in this item

Name:
LISPEN_CIRP_Design_2023_ALMASRI.pdf
Size:
2.564Mb
Format:
PDF
View/Open
CC BY-NC-ND
This document is available under CC BY-NC-ND license

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Deep Learning for Additive Manufacturing-driven Topology Optimization 
    Article dans une revue avec comité de lecture
    ALMASRI, Waad; BETTEBGHOR, Dimitri; ADJED, Faouzi; ABABSA, Fakhreddine; ccDANGLADE, Florence (Elsevier BV, 2022-06-21)
    This paper investigates the potential of Deep Learning (DL) for data-driven topology optimization (TO). Unlike the rest of the literature that mainly applies DL to TO from a mechanical perspective, we developed an original ...
  • GMCAD: an original Synthetic Dataset of 2D Designs along their Geometrical and Mechanical Conditions 
    Article dans une revue avec comité de lecture
    ALMASRI, Waad; BETTEBGHOR, Dimitri; ADJED, Faouzi; ABABSA, Fakhreddine; ccDANGLADE, Florence (Elsevier BV, 2022)
    We build an original synthetic dataset of 2D mechanical designs alongside their mechanical and geometric constraints, GMCAD. Such a dataset allows training Deep Learning (DL) models for Design for Additive Manufacturing ...
  • Deep Learning Architecture for Topological Optimized Mechanical Design Generation with Complex Shape Criterion 
    Communication avec acte
    ALMASRI, Waad; BETTEBGHOR, Dimitri; ABABSA, Fakhreddine; ADJED, Faouzi; ccDANGLADE, Florence (Springer International Publishing, 2021)
    Topology optimization is a powerful tool for producing an optimal free-form design from input mechanical constraints. However, in its traditional-density-based approach, it does not feature a proper definition for the ...
  • Geometrically-driven generation of mechanical designs through deep convolutional GANs 
    Article dans une revue avec comité de lecture
    ALMASRI, Waad; ccBETTEBGHOR, Dimitri; ADJED, Faouzi; ccDANGLADE, Florence; ABABSA, Fakhreddine (Informa UK Limited, 2022-12-16)
    Despite the freedom Additive Manufacturing (AM) offers when manufacturing organic shapes, it still requires some geometrical criteria to avoid a part's collapse during printing. The most synergetic design approach to AM ...
  • Evaluating Added Value of Augmented Reality to Assist Aeronautical Maintenance Workers - Experimentation on On-Field Use Case 
    Communication avec acte
    LOIZEAU, Quentin; ABABSA, Fakhreddine; ccMERIENNE, Frédéric; ccDANGLADE, Florence (2019)
    Augmented Reality (AR) technology facilitates interactions with information and understanding of complex situations. Aeronautical Maintenance combines complexity induced by the variety of products and constraints associated ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales