• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Grain size impact on sheet metal behavior via CPFEM

Article dans une revue avec comité de lecture
Auteur
ccZHOU, Shijie
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccBEN BETTAIEB, Mohamed
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]
ccABED-MERAIM, Farid
178323 Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux [LEM3]

URI
http://hdl.handle.net/10985/27102
DOI
10.1016/j.ijmecsci.2025.111004
Date
2025-12
Journal
International Journal of Mechanical Sciences

Résumé

A novel multiscale computational framework based on Crystal Plasticity Finite Element (CPFE) modeling is proposed to investigate the effect of grain size on the mechanical behavior and ductility limits of thin metal sheets, featuring both uniform and gradient grain structures. This approach relies on designing unitcell models that reflect the microstructural characteristics of thin metal sheets. The overall response of the unit cell is obtained from that of its single crystal constituents using the periodic homogenization scheme. At the single crystal level, the mechanical behavior is modeled within a finite strain, rate-independent plasticity framework, where the plastic flow is governed by the classical Schmid law. The effect of individual grain size is incorporated at the single crystal scale by adjusting the critical resolved shear stress (CRSS) evolution, using a combination of the microscopic Hall–Petch relationship and a dislocation density-based hardening model. To efficiently solve the single crystal constitutive equations, a return-mapping algorithm coupled with the Fischer–Burmeister complementarity function is developed and implemented into ABAQUS/Standard through a user-defined material subroutine (UMAT). At the macroscopic level, the ductility limits are predicted by the Rice bifurcation theory. The performance of the proposed strategy is validated through a series of polycrystalline aggregate simulations. The numerical results demonstrate a significant influence of grain size on both the macroscopic strength and ductility limits of polycrystalline aggregates. Additionally, the introduction of gradient grain structures is shown to substantially enhance both strength and ductility. These findings provide valuable insights for optimizing material performance in engineering applications.

Fichier(s) constituant cette publication

Nom:
LEM3_IJMS_2025_BENBETTAIEB.pdf
Taille:
4.593Mo
Format:
PDF
Fin d'embargo:
2026-06-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • A physically-based mixed hardening model for the prediction of the ductility limits of thin metal sheets using a CPFE approach 
    Article dans une revue avec comité de lecture
    ZHOU, Shuai; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid (Elsevier BV, 2024-03-21)
    An advanced Crystal Plasticity Finite Element (CPFE) approach is developed to accurately predict the ductility limit strains of thin metal sheets. This method uses polycrystalline unit cells to represent the metal sheets ...
  • Investigation of the effect of morphological and crystallographic textures on the ductility limits of thin metal sheets using a CPFEM-based approach 
    Article dans une revue avec comité de lecture
    ZHOU, Shuai; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid (Elsevier BV, 2024-07)
    The current contribution investigates the effect of some relevant microstructural parameters (specifically, morphological and crystallographic textures) on the ductility limits of polycrystalline aggregates using the Crystal ...
  • Ductility limit prediction for polycrystalline aggregates using a CPFEM-based multiscale framework 
    Article dans une revue avec comité de lecture
    ZHU, Jianchang; ccBEN BETTAIEB, Mohamed; ZHOU, Shuai; ccABED-MERAIM, Farid (Elsevier BV, 2023-08)
    The ductility of polycrystalline aggregates is usually limited by two main phenomena: plastic strain localization and void coalescence. The goal of this contribution is to develop a new multiscale framework, based on the ...
  • Ductility limit predictions for porous materials using a damage coupled CPFEM approach 
    Communication sans acte
    ccZHOU, Shuai; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid (2024-05)
    Accurate predictions of ductility limits play a crucial role in product design and manufacturing, offering substantial cost reductions in development. In this investigation, attention is focused on the prediction of ductility ...
  • A crystal plasticity-damage coupled finite element framework for predicting mechanical behavior and ductility limits of thin metal sheets 
    Article dans une revue avec comité de lecture
    ZHOU, S.; ccBEN BETTAIEB, Mohamed; ccABED-MERAIM, Farid (2025-04)
    A new crystal plasticity finite element (CPFE) approach is developed to predict the mechanical behavior and ductility limits of thin metal sheets. Within this approach, a representative volume element (RVE) is chosen to ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales