Foreword
Article dans une revue avec comité de lecture
Date
2018Journal
Comptes Rendus MécaniqueAbstract
The range of topics covers a vivid scope of recent research subjects, on the frontier between applied mathematics and computational mechanics. The contributions range from the fundamentals of solid mechanics, and PDE revisited, through the physical interpretation of numerical models, mathematical foundations of reduced-order modeling up to methodological developments in time and parametric domains.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureAMORES, Víctor J.; MONTÁNS, Francisco J.; CUETO, Elias; CHINESTA SORIA, Francisco (Frontiers Media SA, 2022-05)We propose an efficient method to determine the micro-structural entropic behavior of polymer chains directly from a sufficiently rich non-homogeneous experiment at the continuum scale. The procedure is developed in 2 ...
-
Article dans une revue avec comité de lectureThe imminent impact of immersive technologies in society urges for active research in real-time and interactive physics simulation for virtual worlds to be realistic. In this context, realistic means to be compliant to the ...
-
Article dans une revue avec comité de lectureSANCARLOS, Abel; CHAMPANEY, Victor; CUETO, Elias; CHINESTA SORIA, Francisco (Springer Open, 2023-03)Regressions created from experimental or simulated data enable the construction of metamodels, widely used in a variety of engineering applications. Many engineering problems involve multi-parametric physics whose corresponding ...
-
Article dans une revue avec comité de lectureWe develop inductive biases for the machine learning of complex physical systems based on the port-Hamiltonian formalism. To satisfy by construction the principles of thermodynamics in the learned physics (conservation of ...
-
Article dans une revue avec comité de lectureGHNATIOS, Chady; DI LORENZO, Daniele; CHAMPANEY, Victor; CUETO, Elias; CHINESTA SORIA, Francisco (American Institute of Mathematical Sciences (AIMS), 2024-07)Trajectory optimization is a complex process that includes an infinite number of possibilities and combinations. This work focuses on a particular aspect of the trajectory optimization, related to the optimization of a ...