Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions
Article dans une revue avec comité de lecture
DOI
10.1002/cnm.2476Date
2012Journal
International Journal for Numerical Methods in Biomedical EngineeringRésumé
The numerical solution of the chemical master equation (CME) governing gene regulatory networks and cell signaling processes remains a challenging task owing to its complexity, exponentially growing with the number of species involved. Although most of the existing techniques rely on the use of Monte Carlo-like techniques, we present here a new technique based on the approximation of the unknown variable (the probability of having a particular chemical state) in terms of a finite sum of separable functions. In this framework, the complexity of the CME grows only linearly with the number of state space dimensions. This technique generalizes the so-called Hartree approximation, by using terms as needed in the finite sums decomposition for ensuring convergence. But noteworthy, the ease of the approximation allows for an easy treatment of unknown parameters (as is frequently the case when modeling gene regulatory networks, for instance). These unknown parameters can be considered as new space dimensions. In this way, the proposed method provides solutions for any value of the unknown parameters (within some interval of arbitrary size) in one execution of the program.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lecture
AMMAR, Amine; HUERTA, Antonio;
CHINESTA SORIA, Francisco;
CUETO, Elias; LEYGUE, Adrien (Elsevier, 2014)
Optimization of manufacturing processes or structures involves the optimal choice of many parameters (process parameters, material parameters or geometrical parameters). Usual strategies proceed by defining a trial choice ... -
Article dans une revue avec comité de lectureMany models in Science and Engineering are defined in spaces (the so-called conformation spaces) of high dimensionality. In kinetic theory, for instance, the micro scale of a fluid evolves in a space whose number of ...
-
Article dans une revue avec comité de lectureSCHEUER, Adrien;
CUETO, Elias; KEUNINGS, Roland; ADVANI, Suresh G.;
ABISSET-CHAVANNE, Emmanuelle;
AMMAR, Amine;
CHINESTA SORIA, Francisco (Tech Science Press, 2018)
Describing the orientation state of the particles is often critical in fibre suspension applications. Macroscopic descriptors, the so-called second-order orientation tensor (or moment) leading the way, are often preferred ... -
Article dans une revue avec comité de lectureIBAÑEZ, Ruben;
ABISSET-CHAVANNE, Emmanuelle;
AMMAR, Amine; GONZALEZ, David;
CUETO, Elias; HUERTA, Antonio; DUVAL, Jean-Louis;
CHINESTA SORIA, Francisco (Wiley, 2018)
Sparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This usually involves the need for large amount of data, unfeasible in such a high dimensional ... -
Article dans une revue avec comité de lectureGHNATIOS, Chady;
ABISSET-CHAVANNE, Emmanuelle;
AMMAR, Amine;
CUETO, Elias;
DUVAL, Jean-Louis;
CHINESTA SORIA, Francisco (Elsevier, 2019)
This work aims at proposing a new procedure for parametric problems whose separated representation has been considered difficult, or whose SVD compression impacted the results in terms of performance and accuracy. The ...
