• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions

Article dans une revue avec comité de lecture
Auteur
ccAMMAR, Amine
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
ccCUETO, Elias
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
ccCHINESTA SORIA, Francisco
10921 Institut de Recherche en Génie Civil et Mécanique [GeM]

URI
http://hdl.handle.net/10985/8467
DOI
10.1002/cnm.2476
Date
2012
Journal
International Journal for Numerical Methods in Biomedical Engineering

Résumé

The numerical solution of the chemical master equation (CME) governing gene regulatory networks and cell signaling processes remains a challenging task owing to its complexity, exponentially growing with the number of species involved. Although most of the existing techniques rely on the use of Monte Carlo-like techniques, we present here a new technique based on the approximation of the unknown variable (the probability of having a particular chemical state) in terms of a finite sum of separable functions. In this framework, the complexity of the CME grows only linearly with the number of state space dimensions. This technique generalizes the so-called Hartree approximation, by using terms as needed in the finite sums decomposition for ensuring convergence. But noteworthy, the ease of the approximation allows for an easy treatment of unknown parameters (as is frequently the case when modeling gene regulatory networks, for instance). These unknown parameters can be considered as new space dimensions. In this way, the proposed method provides solutions for any value of the unknown parameters (within some interval of arbitrary size) in one execution of the program.

Fichier(s) constituant cette publication

Nom:
LAMPA_IJNMBE_AMMAR_201209.pdf
Taille:
35.58Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Parametric solutions involving geometry: A step towards efficient shape optimization 
    Article dans une revue avec comité de lecture
    ccAMMAR, Amine; HUERTA, Antonio; ccCHINESTA SORIA, Francisco; ccCUETO, Elias; LEYGUE, Adrien (Elsevier, 2014)
    Optimization of manufacturing processes or structures involves the optimal choice of many parameters (process parameters, material parameters or geometrical parameters). Usual strategies proceed by defining a trial choice ...
  • Towards a high-resolution numerical strategy based on separated representations 
    Article dans une revue avec comité de lecture
    ccCUETO, Elias; GONZALEZ, David; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Springer Link, 2008)
    Many models in Science and Engineering are defined in spaces (the so-called conformation spaces) of high dimensionality. In kinetic theory, for instance, the micro scale of a fluid evolves in a space whose number of ...
  • Data-driven upscaling of orientation kinematics in suspensions of rigid fibres 
    Article dans une revue avec comité de lecture
    SCHEUER, Adrien; ccCUETO, Elias; KEUNINGS, Roland; ADVANI, Suresh G.; ccABISSET-CHAVANNE, Emmanuelle; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Tech Science Press, 2018)
    Describing the orientation state of the particles is often critical in fibre suspension applications. Macroscopic descriptors, the so-called second-order orientation tensor (or moment) leading the way, are often preferred ...
  • A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition 
    Article dans une revue avec comité de lecture
    IBAÑEZ, Ruben; ccABISSET-CHAVANNE, Emmanuelle; ccAMMAR, Amine; GONZALEZ, David; ccCUETO, Elias; HUERTA, Antonio; DUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (Wiley, 2018)
    Sparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This usually involves the need for large amount of data, unfeasible in such a high dimensional ...
  • Advanced separated spatial representations for hardly separable domains 
    Article dans une revue avec comité de lecture
    GHNATIOS, Chady; ccABISSET-CHAVANNE, Emmanuelle; ccAMMAR, Amine; ccCUETO, Elias; ccDUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (Elsevier, 2019)
    This work aims at proposing a new procedure for parametric problems whose separated representation has been considered difficult, or whose SVD compression impacted the results in terms of performance and accuracy. The ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales