• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • View Item
  • Home
  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Casting hybrid twin: physics-based reduced order models enriched with data-driven models enabling the highest accuracy in real-time

Article dans une revue avec comité de lecture
Author
ccAMMAR, Amine
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
ccBEN SAADA, Mariem
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
ccCUETO, Elias
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
CHINESTA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/26322
DOI
10.1007/s12289-024-01812-4
Date
2024-01-23
Journal
International Journal of Material Forming

Abstract

Knowing the thermo-mechanical history of a part during its processing is essential to master the final properties of the product. During forming processes, several parameters can affect it. The development of a surrogate model makes it possible to access history in real time without having to resort to a numerical simulation. We restrict ourselves in this study to the cooling phase of the casting process. The thermal problem has been formulated taking into account the metal as well as the mould. Physical constants such as latent heat, conductivities and heat transfer coefficients has been kept constant. The problem has been parametrized by the coolant temperatures in five different cooling channels. To establish the offline model, multiple simulations are performed based on well-chosen combinations of parameters. The space-time solution of the thermal problem has been solved parametrically. In this work we propose a strategy based on the solution decomposition in space, time, and parameter modes. By applying a machine learning strategy, one should be able to produce modes of the parametric space for new sets of parameters. The machine learning strategy uses either random forest or polynomial fitting regressors. The reconstruction of the thermal solution can then be done using those modes obtained from the parametric space, with the same spatial and temporal basis previously established. This rationale is further extended to establish a model for the ignored part of the physics, in order to describe experimental measures. We present a strategy that makes it possible to calculate this ignorance using the same spatio-temporal basis obtained during the implementation of the numerical model, enabling the efficient construction of processing hybrid twins.

Files in this item

Name:
LAMPA_IJMF_2024_AMMAR.pdf
Size:
3.468Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Recent advances in the remelting process for recycling aluminium alloy chips: a critical review 
    Article dans une revue avec comité de lecture
    CHEN, Xin; ccBEN SAADA, Mariem; ccLAVISSE, BRUNO; ccAMMAR, Amine (Springer Nature, 2025-04-24)
    This critical review examines advances in preprocessing and remelting processes for aluminium alloy chip recycling, emphasizing pre-treatment and remelting techniques that improve both resource recovery and material quality. ...
  • Parametric solutions involving geometry: A step towards efficient shape optimization 
    Article dans une revue avec comité de lecture
    ccAMMAR, Amine; HUERTA, Antonio; ccCHINESTA SORIA, Francisco; ccCUETO, Elias; LEYGUE, Adrien (Elsevier, 2014)
    Optimization of manufacturing processes or structures involves the optimal choice of many parameters (process parameters, material parameters or geometrical parameters). Usual strategies proceed by defining a trial choice ...
  • Towards a high-resolution numerical strategy based on separated representations 
    Article dans une revue avec comité de lecture
    ccCUETO, Elias; GONZALEZ, David; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Springer Link, 2008)
    Many models in Science and Engineering are defined in spaces (the so-called conformation spaces) of high dimensionality. In kinetic theory, for instance, the micro scale of a fluid evolves in a space whose number of ...
  • Data-driven upscaling of orientation kinematics in suspensions of rigid fibres 
    Article dans une revue avec comité de lecture
    SCHEUER, Adrien; ccCUETO, Elias; KEUNINGS, Roland; ADVANI, Suresh G.; ccABISSET-CHAVANNE, Emmanuelle; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Tech Science Press, 2018)
    Describing the orientation state of the particles is often critical in fibre suspension applications. Macroscopic descriptors, the so-called second-order orientation tensor (or moment) leading the way, are often preferred ...
  • A Multidimensional Data-Driven Sparse Identification Technique: The Sparse Proper Generalized Decomposition 
    Article dans une revue avec comité de lecture
    IBAÑEZ, Ruben; ccABISSET-CHAVANNE, Emmanuelle; ccAMMAR, Amine; GONZALEZ, David; ccCUETO, Elias; HUERTA, Antonio; DUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (Wiley, 2018)
    Sparse model identification by means of data is especially cumbersome if the sought dynamics live in a high dimensional space. This usually involves the need for large amount of data, unfeasible in such a high dimensional ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales