• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • View Item
  • Home
  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Casting hybrid twin: physics-based reduced order models enriched with data-driven models enabling the highest accuracy in real-time

Article dans une revue avec comité de lecture
Author
ccAMMAR, Amine
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
ccBEN SAADA, Mariem
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
ccCUETO, Elias
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
CHINESTA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/26322
DOI
10.1007/s12289-024-01812-4
Date
2024-01-23
Journal
International Journal of Material Forming

Abstract

Knowing the thermo-mechanical history of a part during its processing is essential to master the final properties of the product. During forming processes, several parameters can affect it. The development of a surrogate model makes it possible to access history in real time without having to resort to a numerical simulation. We restrict ourselves in this study to the cooling phase of the casting process. The thermal problem has been formulated taking into account the metal as well as the mould. Physical constants such as latent heat, conductivities and heat transfer coefficients has been kept constant. The problem has been parametrized by the coolant temperatures in five different cooling channels. To establish the offline model, multiple simulations are performed based on well-chosen combinations of parameters. The space-time solution of the thermal problem has been solved parametrically. In this work we propose a strategy based on the solution decomposition in space, time, and parameter modes. By applying a machine learning strategy, one should be able to produce modes of the parametric space for new sets of parameters. The machine learning strategy uses either random forest or polynomial fitting regressors. The reconstruction of the thermal solution can then be done using those modes obtained from the parametric space, with the same spatial and temporal basis previously established. This rationale is further extended to establish a model for the ignored part of the physics, in order to describe experimental measures. We present a strategy that makes it possible to calculate this ignorance using the same spatio-temporal basis obtained during the implementation of the numerical model, enabling the efficient construction of processing hybrid twins.

Files in this item

Name:
LAMPA_IJMF_2024_AMMAR.pdf
Size:
3.468Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Recent advances in the remelting process for recycling aluminium alloy chips: a critical review 
    Article dans une revue avec comité de lecture
    CHEN, Xin; ccBEN SAADA, Mariem; ccLAVISSE, BRUNO; ccAMMAR, Amine (Springer Nature, 2025-04-24)
    This critical review examines advances in preprocessing and remelting processes for aluminium alloy chip recycling, emphasizing pre-treatment and remelting techniques that improve both resource recovery and material quality. ...
  • Advanced separated spatial representations for hardly separable domains 
    Article dans une revue avec comité de lecture
    GHNATIOS, Chady; ccABISSET-CHAVANNE, Emmanuelle; ccAMMAR, Amine; ccCUETO, Elias; ccDUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (Elsevier, 2019)
    This work aims at proposing a new procedure for parametric problems whose separated representation has been considered difficult, or whose SVD compression impacted the results in terms of performance and accuracy. The ...
  • Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions 
    Article dans une revue avec comité de lecture
    ccAMMAR, Amine; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (John Wiley and Sons, 2012)
    The numerical solution of the chemical master equation (CME) governing gene regulatory networks and cell signaling processes remains a challenging task owing to its complexity, exponentially growing with the number of ...
  • On the effective conductivity and the apparent viscosity of a thin rough polymer interface using PGD‐based separated representations 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; DELPLACE, Frank; BARASINSKI, Anais; DUVAL, Jean-Louis; ccCUETO, Elias; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Wiley, 2020)
    Composite manufacturing processes usually proceed from preimpregnated preforms that are consolidated by simultaneously applying heat and pressure, so as to ensure a perfect contact compulsory for making molecular diffusion ...
  • Proper generalized decomposition of time-multiscale models 
    Article dans une revue avec comité de lecture
    ccAMMAR, Amine; ccCHINESTA SORIA, Francisco; ccCUETO, Elias; DOBLARÉ, Manuel (Wiley, 2012)
    Models encountered in computational mechanics could involve many time scales. When these time scales cannot be separated, one must solve the evolution model in the entire time interval by using the finest time step that ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales