Nos laboratoires
Browse by
Collections in this community
Recent Submissions
-
Article dans une revue avec comité de lecture(Springer Science and Business Media LLC, 2023-12-13)In this Letter, it is shown how the determination of the effective coefficients involved in the macroscopic model for pressure driven and/or Couette flow in a rough fracture can be simplified by solving only one closure ...
-
Article dans une revue avec comité de lecture(MDPI AG, 2024-04-10)We present a detailed analysis based on both experimental and 3D modelling approaches of the unique silicon nitride precipitation sequence observed in ferritic Fe-Si alloys upon nitriding. At 570 °C, Si3N4 silicon nitride ...
-
Article dans une revue avec comité de lecture(Springer Science and Business Media LLC, 2024-04-01)AbstractPinus Pinaster Ait. is a softwood species indigenous of the South West of Europe, broadly spread alongside the Mediterranean Sea and present worldwide. Pinus Pinaster Ait. (ssp. Atlantica) is largely used in ...
-
Article dans une revue avec comité de lecture(Elsevier BV, 2024)Circular Economy initiatives have introduced a solution demand for the treatment of End of Life (EoL) products, switching from shredding and material recycling to the recovery of modules/components that remain functional. ...
-
Article dans une revue avec comité de lecture(Springer Science and Business Media LLC, 2024-07-02)Multi-scale numerical homogenisation strategies have been used in the recent years to efficiently compute the effective elastic properties of heterogeneous materials. Coupled with a stochastic approach, they can be applied ...
-
Article dans une revue avec comité de lecture(Elsevier BV, 2024-07)This study explores the potential of untapped lithium hydroxide (LiOH) as a phase change material for thermal energy storage. By overcoming the challenges associated with the liquid LiOH leakage, we successfully thermal-cycled ...
-
Article dans une revue avec comité de lecture(Elsevier BV, 2024-09)In the present work, a novel modeling strategy to accelerate multi-scale simulations of heterogeneous materials using deep neural networks is developed. This approach, called FE-LSTM, consists of combining the finite element ...